Nuprl Lemma : no_repeats_concat
∀[T:Type]. ∀[ll:T List List].
  uiff(no_repeats(T;concat(ll));∀i:ℕ||ll||
                                  (no_repeats(T;ll[i])
                                  ∧ (∀j:{j:ℕ||ll||| ¬(i = j ∈ ℤ)} . ∀k:ℕ||ll[i]||.  (¬(ll[i][k] ∈ ll[j])))))
Proof
Definitions occuring in Statement : 
no_repeats: no_repeats(T;l), 
l_member: (x ∈ l), 
select: L[n], 
length: ||as||, 
concat: concat(ll), 
list: T List, 
int_seg: {i..j-}, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
not: ¬A, 
and: P ∧ Q, 
set: {x:A| B[x]} , 
natural_number: $n, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
member: t ∈ T, 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
int_seg: {i..j-}, 
guard: {T}, 
sq_stable: SqStable(P), 
squash: ↓T, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
less_than: a < b, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
l_all: (∀x∈L.P[x]), 
pairwise: (∀x,y∈L.  P[x; y]), 
l_disjoint: l_disjoint(T;l1;l2), 
iff: P ⇐⇒ Q, 
subtype_rel: A ⊆r B, 
rev_implies: P ⇐ Q, 
le: A ≤ B, 
cand: A c∧ B, 
l_member: (x ∈ l), 
nat: ℕ, 
ge: i ≥ j , 
true: True
Lemmas referenced : 
l_member_wf, 
select_wf, 
list_wf, 
int_seg_properties, 
length_wf, 
sq_stable__not, 
equal_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
int_seg_wf, 
set_wf, 
not_wf, 
no_repeats_witness, 
l_all_wf, 
no_repeats_wf, 
pairwise_wf2, 
l_disjoint_wf, 
all_wf, 
iff_weakening_uiff, 
concat_wf, 
no_repeats-concat-iff, 
uiff_wf, 
lelt_wf, 
select_member, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
subtype_rel_sets, 
equal-wf-T-base, 
set_subtype_base, 
int_subtype_base, 
less_than_transitivity2, 
le_weakening2, 
nat_properties, 
squash_wf, 
true_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
independent_functionElimination, 
voidElimination, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
setElimination, 
rename, 
independent_isectElimination, 
natural_numberEquality, 
intEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
independent_pairEquality, 
setEquality, 
productEquality, 
instantiate, 
addLevel, 
applyEquality, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
hyp_replacement
Latex:
\mforall{}[T:Type].  \mforall{}[ll:T  List  List].
    uiff(no\_repeats(T;concat(ll));\mforall{}i:\mBbbN{}||ll||
                                                                    (no\_repeats(T;ll[i])
                                                                    \mwedge{}  (\mforall{}j:\{j:\mBbbN{}||ll|||  \mneg{}(i  =  j)\}  .  \mforall{}k:\mBbbN{}||ll[i]||.
                                                                              (\mneg{}(ll[i][k]  \mmember{}  ll[j])))))
 Date html generated: 
2016_10_21-AM-10_30_22
 Last ObjectModification: 
2016_07_12-AM-05_44_35
Theory : list_1
Home
Index