Nuprl Lemma : super-fact-unroll

[n:ℕ+]. ((n)!! (n)! (n 1)!!)


Proof




Definitions occuring in Statement :  super-fact: (n)!! fact: (n)! nat_plus: + uall: [x:A]. B[x] multiply: m subtract: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat_plus: + so_lambda: λ2x.t[x] so_apply: x[s] super-fact: (n)!! top: Top all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A prop: subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T less_than': less_than'(a;b) true: True bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈  nat:
Lemmas referenced :  subtype_base_sq nat_plus_wf set_subtype_base less_than_wf int_subtype_base primrec-unroll eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int nat_plus_properties decidable__equal_int fact_wf satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf super-fact_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int subtract-add-cancel decidable__le intformnot_wf intformle_wf int_formula_prop_not_lemma int_formula_prop_le_lemma le_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma itermMultiply_wf int_term_value_mul_lemma mul_bounds_1b
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesis independent_isectElimination sqequalRule intEquality lambdaEquality natural_numberEquality hypothesisEquality setElimination rename isect_memberEquality voidElimination voidEquality because_Cache lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination dependent_functionElimination multiplyEquality dependent_pairFormation int_eqEquality independent_pairFormation computeAll applyEquality dependent_set_memberEquality imageMemberEquality baseClosed promote_hyp independent_functionElimination addEquality sqequalAxiom

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  ((n)!!  \msim{}  (n)!  *  (n  -  1)!!)



Date html generated: 2018_05_21-PM-01_04_39
Last ObjectModification: 2018_01_28-PM-02_13_14

Theory : num_thy_1


Home Index