Nuprl Lemma : rec-value-list-is-rec-value

[x:rec-value() List]. (x ∈ rec-value())


Proof




Definitions occuring in Statement :  rec-value: rec-value() list: List uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q ext-eq: A ≡ B cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) b-union: A ⋃ B tunion: x:A.B[x] ifthenelse: if then else fi  btrue: tt pi2: snd(t) atomic-values: atomic-values() Value: Value() assert: b is-atomic: is-atomic(x) true: True bfalse: ff
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list rec-value_wf less_than_transitivity1 less_than_irreflexivity list_wf list-cases rec-value-ext product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int btrue_wf ifthenelse_wf atomic-values_wf b-union_wf value-type-has-value list-value-type nil_wf has-value_wf_base assert_wf is-atomic_wf bfalse_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry applyEquality because_Cache unionElimination productElimination promote_hyp hypothesis_subsumption applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate cumulativity imageElimination imageMemberEquality dependent_pairEquality universeEquality productEquality unionEquality independent_pairEquality

Latex:
\mforall{}[x:rec-value()  List].  (x  \mmember{}  rec-value())



Date html generated: 2017_04_17-AM-09_07_40
Last ObjectModification: 2017_02_27-PM-05_15_10

Theory : rec_values


Home Index