Nuprl Lemma : assert-bag_all

[T:Type]. ∀[f:T ⟶ 𝔹]. ∀[b:bag(T)].  (∀x:T. (x ↓∈  (↑f[x])) ⇐⇒ ↑bag_all(b;f))


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag_all: bag_all(b;f) bag: bag(T) assert: b bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q all: x:A. B[x] squash: T sq_stable: SqStable(P) exists: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a assert: b ifthenelse: if then else fi  bag_all: bag_all(b;f) bag-accum: bag-accum(v,x.f[v; x];init;bs) list_accum: list_accum nil: [] it: btrue: tt true: True cons-bag: x.b uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) cand: c∧ B sq_or: a ↓∨ b or: P ∨ Q guard: {T} empty-bag: {} top: Top false: False band: p ∧b q bfalse: ff sq_type: SQType(T)
Lemmas referenced :  all_wf bag-member_wf assert_wf bag_all_wf assert_witness bag_wf bool_wf bag_to_squash_list sq_stable__all sq_stable_from_decidable decidable__assert squash_wf list_induction list-subtype-bag list_wf nil_wf bag_all-cons assert_of_band bag-member-cons equal_wf cons_wf bag_all-empty bag-member-empty-iff empty-bag_wf true_wf bool_cases_sqequal cons-bag_wf band_wf and_wf assert_elim subtype_base_sq bool_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality sqequalRule lambdaEquality functionEquality hypothesis applyEquality functionExtensionality productElimination independent_pairEquality dependent_functionElimination independent_functionElimination isect_memberEquality because_Cache universeEquality imageElimination promote_hyp rename independent_isectElimination natural_numberEquality voidEquality voidElimination inlFormation imageMemberEquality baseClosed inrFormation hyp_replacement equalitySymmetry Error :applyLambdaEquality,  unionElimination comment dependent_set_memberEquality setElimination setEquality equalityTransitivity instantiate

Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[b:bag(T)].    (\mforall{}x:T.  (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  (\muparrow{}f[x]))  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}bag\_all(b;f))



Date html generated: 2016_10_25-AM-10_28_45
Last ObjectModification: 2016_07_12-AM-06_45_14

Theory : bags


Home Index