Nuprl Lemma : assert-bag_all
∀[T:Type]. ∀[f:T ⟶ 𝔹]. ∀[b:bag(T)].  (∀x:T. (x ↓∈ b 
⇒ (↑f[x])) 
⇐⇒ ↑bag_all(b;f))
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag_all: bag_all(b;f)
, 
bag: bag(T)
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bag_all: bag_all(b;f)
, 
bag-accum: bag-accum(v,x.f[v; x];init;bs)
, 
list_accum: list_accum, 
nil: []
, 
it: ⋅
, 
btrue: tt
, 
true: True
, 
cons-bag: x.b
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
cand: A c∧ B
, 
sq_or: a ↓∨ b
, 
or: P ∨ Q
, 
guard: {T}
, 
empty-bag: {}
, 
top: Top
, 
false: False
, 
band: p ∧b q
, 
bfalse: ff
, 
sq_type: SQType(T)
Lemmas referenced : 
all_wf, 
bag-member_wf, 
assert_wf, 
bag_all_wf, 
assert_witness, 
bag_wf, 
bool_wf, 
bag_to_squash_list, 
sq_stable__all, 
sq_stable_from_decidable, 
decidable__assert, 
squash_wf, 
list_induction, 
list-subtype-bag, 
list_wf, 
nil_wf, 
bag_all-cons, 
assert_of_band, 
bag-member-cons, 
equal_wf, 
cons_wf, 
bag_all-empty, 
bag-member-empty-iff, 
empty-bag_wf, 
true_wf, 
bool_cases_sqequal, 
cons-bag_wf, 
band_wf, 
and_wf, 
assert_elim, 
subtype_base_sq, 
bool_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
hypothesis, 
applyEquality, 
functionExtensionality, 
productElimination, 
independent_pairEquality, 
dependent_functionElimination, 
independent_functionElimination, 
isect_memberEquality, 
because_Cache, 
universeEquality, 
imageElimination, 
promote_hyp, 
rename, 
independent_isectElimination, 
natural_numberEquality, 
voidEquality, 
voidElimination, 
inlFormation, 
imageMemberEquality, 
baseClosed, 
inrFormation, 
hyp_replacement, 
equalitySymmetry, 
Error :applyLambdaEquality, 
unionElimination, 
comment, 
dependent_set_memberEquality, 
setElimination, 
setEquality, 
equalityTransitivity, 
instantiate
Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[b:bag(T)].    (\mforall{}x:T.  (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  (\muparrow{}f[x]))  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}bag\_all(b;f))
Date html generated:
2016_10_25-AM-10_28_45
Last ObjectModification:
2016_07_12-AM-06_45_14
Theory : bags
Home
Index