Nuprl Lemma : bag-induction

[T:Type]. ∀[P:bag(T) ⟶ ℙ].  ((∀x:T. P[[x]])  (∀bs:bag({b:bag(T)| P[b]} ). P[bag-union(bs)])  (∀b:bag(T). P[b]))


Proof




Definitions occuring in Statement :  bag-union: bag-union(bbs) bag: bag(T) cons: [a b] nil: [] uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: so_apply: x[s] subtype_rel: A ⊆B so_lambda: λ2x.t[x] uimplies: supposing a bag-map: bag-map(f;bs) bag-union: bag-union(bbs) concat: concat(ll) nat: false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q guard: {T} or: P ∨ Q cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  bag_wf all_wf bag-union_wf subtype_rel_bag cons_wf nil_wf list-subtype-bag bag-subtype-list list_wf top_wf equal_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases map_nil_lemma reduce_nil_lemma product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int map_cons_lemma reduce_cons_lemma list_ind_cons_lemma list_ind_nil_lemma bag-map_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis setEquality applyEquality functionExtensionality lambdaEquality sqequalRule universeEquality because_Cache independent_isectElimination setElimination rename functionEquality dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination intWeakElimination natural_numberEquality dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll sqequalAxiom unionElimination promote_hyp hypothesis_subsumption productElimination applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination

Latex:
\mforall{}[T:Type].  \mforall{}[P:bag(T)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x:T.  P[[x]])  {}\mRightarrow{}  (\mforall{}bs:bag(\{b:bag(T)|  P[b]\}  ).  P[bag-union(bs)])  {}\mRightarrow{}  (\mforall{}b:bag(T).  P[b]))



Date html generated: 2017_10_01-AM-08_46_34
Last ObjectModification: 2017_07_26-PM-04_31_20

Theory : bags


Home Index