Nuprl Lemma : has-value-length-member-list

[l:Base]. l ∈ Base List supposing (||l||)↓


Proof




Definitions occuring in Statement :  length: ||as|| list: List has-value: (a)↓ uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T base: Base
Definitions unfolded in proof :  bfalse: ff rev_implies:  Q iff: ⇐⇒ Q btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) guard: {T} sq_type: SQType(T) compose: g or: P ∨ Q decidable: Dec(P) subtype_rel: A ⊆B prop: and: P ∧ Q top: Top all: x:A. B[x] not: ¬A exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  false: False implies:  Q nat: list_ind: list_ind length: ||as|| uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] has-value: (a)↓ cons: [a b] nil: [] it:
Lemmas referenced :  assert_of_bnot iff_weakening_uiff iff_transitivity eqff_to_assert assert_of_eq_int eqtt_to_assert bool_subtype_base bool_wf subtype_base_sq bool_cases equal-wf-base not_wf bnot_wf assert_wf int_formula_prop_eq_lemma intformeq_wf eq_int_wf le_wf fun_exp_unroll int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le bottom_diverge strictness-apply fun_exp0_lemma base_wf int_subtype_base has-value_wf_base less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties has-value-implies-dec-ispair cons_wf value-type-has-value int-value-type nil_wf has-value-implies-dec-isaxiom
Rules used in proof :  impliesFunctionality productElimination cumulativity because_Cache dependent_set_memberEquality unionElimination applyEquality baseClosed closedConclusion baseApply instantiate equalitySymmetry equalityTransitivity axiomEquality independent_functionElimination computeAll independent_pairFormation voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_isectElimination natural_numberEquality lambdaFormation intWeakElimination rename setElimination hypothesisEquality isectElimination extract_by_obid thin compactness hypothesis sqequalRule sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution callbyvalueReduce callbyvalueCallbyvalue callbyvalueAdd

Latex:
\mforall{}[l:Base].  l  \mmember{}  Base  List  supposing  (||l||)\mdownarrow{}



Date html generated: 2020_05_20-AM-09_07_31
Last ObjectModification: 2020_01_26-PM-00_13_22

Theory : bar!type


Home Index