Nuprl Lemma : equipollent-int-nat

ℤ ~ ℕ


Proof




Definitions occuring in Statement :  equipollent: B nat: int:
Definitions unfolded in proof :  equipollent: B exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a nat: decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top prop: bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b biject: Bij(A;B;f) inject: Inj(A;B;f) subtype_rel: A ⊆B surject: Surj(A;B;f) ge: i ≥  true: True nequal: a ≠ b ∈  int_nzero: -o nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) le: A ≤ B
Lemmas referenced :  int_formula_prop_less_lemma intformless_wf false_wf multiply-is-int-iff add-is-int-iff less_than_wf rem_bounds_1 nequal_wf div_rem_sum equal-wf-base-T neg_assert_of_eq_int assert_of_eq_int true_wf eq_int_wf int_formula_prop_eq_lemma intformeq_wf decidable__equal_int nat_properties biject_wf int_subtype_base nat_wf equal-wf-base int_term_value_minus_lemma int_term_value_subtract_lemma int_term_value_add_lemma itermMinus_wf itermSubtract_wf itermAdd_wf subtract_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermMultiply_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le assert_of_le_int eqtt_to_assert bool_wf le_int_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_pairFormation lambdaEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesisEquality hypothesis lambdaFormation unionElimination equalityElimination sqequalRule productElimination independent_isectElimination because_Cache dependent_set_memberEquality dependent_functionElimination multiplyEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity independent_functionElimination addEquality minusEquality equalityEquality baseApply closedConclusion baseClosed applyEquality remainderEquality setElimination rename addLevel divideEquality introduction imageMemberEquality pointwiseFunctionality imageElimination

Latex:
\mBbbZ{}  \msim{}  \mBbbN{}



Date html generated: 2016_05_15-PM-05_25_32
Last ObjectModification: 2016_01_16-PM-00_29_47

Theory : general


Home Index