Nuprl Lemma : equipollent-nat-prod-nsub

k:ℕ+. ℕ ~ ℕ × ℕk


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} nat_plus: + nat: all: x:A. B[x] product: x:A × B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] equipollent: B exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] int_seg: {i..j-} nat: nat_plus: + nequal: a ≠ b ∈  ge: i ≥  not: ¬A implies:  Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top and: P ∧ Q prop: subtype_rel: A ⊆B lelt: i ≤ j < k biject: Bij(A;B;f) inject: Inj(A;B;f) surject: Surj(A;B;f) pi1: fst(t) pi2: snd(t) int_nzero: -o so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} decidable: Dec(P) or: P ∨ Q squash: T true: True iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b)
Lemmas referenced :  divide_wf nat_properties nat_plus_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf equal-wf-base int_subtype_base rem_bounds_1 lelt_wf nat_wf equal_wf int_seg_wf biject_wf nat_plus_wf div_rem_sum subtype_rel_sets less_than_wf nequal_wf int_seg_properties decidable__le intformnot_wf intformle_wf int_formula_prop_not_lemma int_formula_prop_le_lemma squash_wf true_wf iff_weakening_equal add_functionality_wrt_eq le_wf add_nat_wf multiply_nat_wf nat_plus_subtype_nat int_seg_subtype_nat false_wf itermAdd_wf itermMultiply_wf int_term_value_add_lemma int_term_value_mul_lemma div-cancel3 rem_invariant rem_base_case decidable__lt mul-commutes add-commutes
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation dependent_pairFormation lambdaEquality independent_pairEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_set_memberEquality remainderEquality setElimination rename because_Cache natural_numberEquality independent_isectElimination int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll applyEquality baseClosed productElimination productEquality functionExtensionality applyLambdaEquality setEquality equalityTransitivity equalitySymmetry independent_functionElimination unionElimination imageElimination universeEquality imageMemberEquality multiplyEquality addEquality

Latex:
\mforall{}k:\mBbbN{}\msupplus{}.  \mBbbN{}  \msim{}  \mBbbN{}  \mtimes{}  \mBbbN{}k



Date html generated: 2018_05_21-PM-07_57_26
Last ObjectModification: 2017_07_26-PM-05_34_59

Theory : general


Home Index