Nuprl Lemma : equipollent-nat-prod-nsub
∀k:ℕ+. ℕ ~ ℕ × ℕk
Proof
Definitions occuring in Statement : 
equipollent: A ~ B, 
int_seg: {i..j-}, 
nat_plus: ℕ+, 
nat: ℕ, 
all: ∀x:A. B[x], 
product: x:A × B[x], 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
equipollent: A ~ B, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
int_seg: {i..j-}, 
nat: ℕ, 
nat_plus: ℕ+, 
nequal: a ≠ b ∈ T , 
ge: i ≥ j , 
not: ¬A, 
implies: P ⇒ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
lelt: i ≤ j < k, 
biject: Bij(A;B;f), 
inject: Inj(A;B;f), 
surject: Surj(A;B;f), 
pi1: fst(t), 
pi2: snd(t), 
int_nzero: ℤ-o, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
guard: {T}, 
decidable: Dec(P), 
or: P ∨ Q, 
squash: ↓T, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
le: A ≤ B, 
less_than': less_than'(a;b)
Lemmas referenced : 
divide_wf, 
nat_properties, 
nat_plus_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
int_subtype_base, 
rem_bounds_1, 
lelt_wf, 
nat_wf, 
equal_wf, 
int_seg_wf, 
biject_wf, 
nat_plus_wf, 
div_rem_sum, 
subtype_rel_sets, 
less_than_wf, 
nequal_wf, 
int_seg_properties, 
decidable__le, 
intformnot_wf, 
intformle_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
add_functionality_wrt_eq, 
le_wf, 
add_nat_wf, 
multiply_nat_wf, 
nat_plus_subtype_nat, 
int_seg_subtype_nat, 
false_wf, 
itermAdd_wf, 
itermMultiply_wf, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
div-cancel3, 
rem_invariant, 
rem_base_case, 
decidable__lt, 
mul-commutes, 
add-commutes
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
dependent_pairFormation, 
lambdaEquality, 
independent_pairEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_set_memberEquality, 
remainderEquality, 
setElimination, 
rename, 
because_Cache, 
natural_numberEquality, 
independent_isectElimination, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
applyEquality, 
baseClosed, 
productElimination, 
productEquality, 
functionExtensionality, 
applyLambdaEquality, 
setEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
unionElimination, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
multiplyEquality, 
addEquality
Latex:
\mforall{}k:\mBbbN{}\msupplus{}.  \mBbbN{}  \msim{}  \mBbbN{}  \mtimes{}  \mBbbN{}k
Date html generated:
2018_05_21-PM-07_57_26
Last ObjectModification:
2017_07_26-PM-05_34_59
Theory : general
Home
Index