Nuprl Lemma : general-pigeon-hole
∀[n,m,k:ℕ]. ∀[f:ℕn ⟶ ℕm].
  n ≤ (k * m) supposing ∀L:ℕn List. (no_repeats(ℕn;L) 
⇒ (∃i:ℕm. (∀x∈L.f[x] = i ∈ ℕm)) 
⇒ (||L|| ≤ k))
Proof
Definitions occuring in Statement : 
l_all: (∀x∈L.P[x])
, 
no_repeats: no_repeats(T;l)
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
multiply: n * m
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
so_apply: x[s]
, 
gt: i > j
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
le: A ≤ B
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
l_all: (∀x∈L.P[x])
, 
lelt: i ≤ j < k
, 
guard: {T}
, 
cand: A c∧ B
, 
no_repeats: no_repeats(T;l)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
l_member: (x ∈ l)
Lemmas referenced : 
finite-partition, 
sum_bound, 
length_wf, 
nat_wf, 
int_seg_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
itermMultiply_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
less_than'_wf, 
all_wf, 
list_wf, 
no_repeats_wf, 
exists_wf, 
l_all_wf2, 
l_member_wf, 
equal_wf, 
le_wf, 
list-set-type2, 
subtype_rel_list, 
lelt_wf, 
non_neg_length, 
int_seg_properties, 
select_wf, 
length_wf_nat, 
itermConstant_wf, 
int_term_value_constant_lemma, 
not_wf, 
less_than_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
decidable__equal_int, 
equal-wf-base, 
int_subtype_base, 
l_all_iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
applyEquality, 
functionExtensionality, 
natural_numberEquality, 
setElimination, 
rename, 
independent_isectElimination, 
lambdaFormation, 
multiplyEquality, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_pairEquality, 
axiomEquality, 
functionEquality, 
setEquality, 
dependent_set_memberEquality, 
applyLambdaEquality, 
independent_functionElimination, 
hyp_replacement
Latex:
\mforall{}[n,m,k:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}m].
    n  \mleq{}  (k  *  m)  supposing  \mforall{}L:\mBbbN{}n  List.  (no\_repeats(\mBbbN{}n;L)  {}\mRightarrow{}  (\mexists{}i:\mBbbN{}m.  (\mforall{}x\mmember{}L.f[x]  =  i))  {}\mRightarrow{}  (||L||  \mleq{}  k))
Date html generated:
2018_05_21-PM-06_51_35
Last ObjectModification:
2017_07_26-PM-04_57_48
Theory : general
Home
Index