Nuprl Lemma : finite-partition
∀n,k:ℕ. ∀c:ℕn ⟶ ℕk.
  ∃p:ℕk ⟶ (ℕ List)
   ((Σ(||p j|| | j < k) = n ∈ ℤ)
   ∧ (∀j:ℕk. ∀x,y:ℕ||p j||.  p j[x] > p j[y] supposing x < y)
   ∧ (∀j:ℕk. ∀x:ℕ||p j||.  (p j[x] < n c∧ ((c p j[x]) = j ∈ ℤ))))
Proof
Definitions occuring in Statement : 
sum: Σ(f[x] | x < k)
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
cand: A c∧ B
, 
gt: i > j
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
prop: ℙ
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
less_than: a < b
, 
squash: ↓T
, 
gt: i > j
, 
cand: A c∧ B
, 
le: A ≤ B
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
it: ⋅
, 
nil: []
, 
select: L[n]
, 
less_than': less_than'(a;b)
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
bool: 𝔹
, 
unit: Unit
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
cons: [a / b]
Lemmas referenced : 
nat_wf, 
int_seg_wf, 
subtract_wf, 
list_wf, 
sum_wf, 
length_wf, 
int_subtype_base, 
less_than_wf, 
gt_wf, 
select_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
le_wf, 
intformless_wf, 
int_formula_prop_less_lemma, 
non_neg_length, 
length_wf_nat, 
set_subtype_base, 
lelt_wf, 
primrec-wf2, 
all_wf, 
exists_wf, 
equal-wf-base, 
isect_wf, 
equal-wf-T-base, 
member-less_than, 
satisfiable-full-omega-tt, 
iff_weakening_equal, 
empty_support, 
true_wf, 
squash_wf, 
equal_wf, 
base_wf, 
stuck-spread, 
length_of_nil_lemma, 
nil_wf, 
subtype_rel_function, 
int_seg_subtype, 
istype-false, 
not-le-2, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
add-commutes, 
le-add-cancel2, 
subtype_rel_self, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
cons_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
sum_functionality, 
length_of_cons_lemma, 
sum-ite, 
singleton_support_sum, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
not_wf, 
equal-wf-base-T, 
eq_int_eq_true, 
btrue_wf, 
not_assert_elim, 
btrue_neq_bfalse, 
decidable__equal_int, 
itermAdd_wf, 
int_term_value_add_lemma, 
select_cons_tl, 
subtype_rel_list, 
add-is-int-iff, 
false_wf, 
assert_wf, 
bnot_wf, 
uiff_transitivity, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
select-cons-tl
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
thin, 
rename, 
setElimination, 
sqequalRule, 
Error :functionIsType, 
Error :universeIsType, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
natural_numberEquality, 
hypothesisEquality, 
Error :productIsType, 
Error :equalityIsType4, 
Error :inhabitedIsType, 
Error :lambdaEquality_alt, 
applyEquality, 
functionExtensionality, 
because_Cache, 
Error :isectIsType, 
independent_isectElimination, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
Error :dependent_set_memberEquality_alt, 
imageElimination, 
Error :equalityIsType3, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
intEquality, 
Error :setIsType, 
functionEquality, 
productEquality, 
dependent_set_memberEquality, 
computeAll, 
isect_memberFormation, 
imageMemberEquality, 
universeEquality, 
voidEquality, 
isect_memberEquality, 
baseClosed, 
lambdaEquality, 
dependent_pairFormation, 
lambdaFormation, 
addEquality, 
minusEquality, 
multiplyEquality, 
equalityElimination, 
Error :equalityIsType1, 
promote_hyp, 
instantiate, 
cumulativity, 
hyp_replacement, 
Error :isect_memberFormation_alt, 
pointwiseFunctionality, 
baseApply, 
closedConclusion
Latex:
\mforall{}n,k:\mBbbN{}.  \mforall{}c:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}k.
    \mexists{}p:\mBbbN{}k  {}\mrightarrow{}  (\mBbbN{}  List)
      ((\mSigma{}(||p  j||  |  j  <  k)  =  n)
      \mwedge{}  (\mforall{}j:\mBbbN{}k.  \mforall{}x,y:\mBbbN{}||p  j||.    p  j[x]  >  p  j[y]  supposing  x  <  y)
      \mwedge{}  (\mforall{}j:\mBbbN{}k.  \mforall{}x:\mBbbN{}||p  j||.    (p  j[x]  <  n  c\mwedge{}  ((c  p  j[x])  =  j))))
Date html generated:
2019_06_20-PM-01_32_14
Last ObjectModification:
2018_10_05-AM-09_40_06
Theory : list_1
Home
Index