Nuprl Lemma : sum-ite
∀[k:ℕ]. ∀[f,g:ℕk ⟶ ℤ]. ∀[p:ℕk ⟶ 𝔹].
  (Σ(if p[i] then f[i] + g[i] else f[i] fi  | i < k) = (Σ(f[i] | i < k) + Σ(if p[i] then g[i] else 0 fi  | i < k)) ∈ ℤ)
Proof
Definitions occuring in Statement : 
sum: Σ(f[x] | x < k)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
ifthenelse: if b then t else f fi 
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
Lemmas referenced : 
sum-as-primrec, 
ifthenelse_wf, 
int_seg_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
bool_wf, 
primrec0_lemma, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
subtype_rel_dep_function, 
int_seg_subtype, 
false_wf, 
subtype_rel_self, 
primrec-unroll, 
eq_int_wf, 
uiff_transitivity, 
equal-wf-base, 
int_subtype_base, 
assert_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
decidable__lt, 
lelt_wf, 
decidable__equal_int, 
add-is-int-iff, 
itermAdd_wf, 
int_term_value_add_lemma, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
intEquality, 
addEquality, 
lambdaFormation, 
intWeakElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
functionEquality, 
unionElimination, 
equalityElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
productElimination, 
impliesFunctionality, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
pointwiseFunctionality, 
promote_hyp, 
instantiate, 
cumulativity
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[f,g:\mBbbN{}k  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[p:\mBbbN{}k  {}\mrightarrow{}  \mBbbB{}].
    (\mSigma{}(if  p[i]  then  f[i]  +  g[i]  else  f[i]  fi    |  i  <  k)
    =  (\mSigma{}(f[i]  |  i  <  k)  +  \mSigma{}(if  p[i]  then  g[i]  else  0  fi    |  i  <  k)))
Date html generated:
2017_04_14-AM-09_20_36
Last ObjectModification:
2017_02_27-PM-03_57_06
Theory : int_2
Home
Index