Nuprl Lemma : l-ordered-filter2

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  ∀L:T List. ∀P:{x:T| (x ∈ L)}  ⟶ 𝔹.  (l-ordered(T;x,y.R[x;y];L)  l-ordered(T;x,y.R[x;y];filter(P;L)))


Proof




Definitions occuring in Statement :  l-ordered: l-ordered(T;x,y.R[x; y];L) l_member: (x ∈ l) filter: filter(P;l) list: List bool: 𝔹 uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: implies:  Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_apply: x[s] top: Top true: True iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a ifthenelse: if then else fi  subtype_rel: A ⊆B guard: {T} cand: c∧ B bfalse: ff exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb assert: b false: False
Lemmas referenced :  list_induction all_wf l_member_wf bool_wf l-ordered_wf filter_wf5 list_wf filter_nil_lemma true_wf nil_wf l-ordered-nil-true filter_cons_lemma cons_member cons_wf eqtt_to_assert l-ordered-cons subtype_rel_dep_function subtype_rel_sets equal_wf subtype_rel_self set_wf member_filter_2 eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality functionEquality setEquality cumulativity because_Cache hypothesis setElimination rename applyEquality functionExtensionality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality natural_numberEquality addLevel allFunctionality impliesFunctionality productElimination inlFormation dependent_set_memberEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination inrFormation independent_pairFormation dependent_pairFormation promote_hyp instantiate productEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}L:T  List.  \mforall{}P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}.
        (l-ordered(T;x,y.R[x;y];L)  {}\mRightarrow{}  l-ordered(T;x,y.R[x;y];filter(P;L)))



Date html generated: 2018_05_21-PM-07_38_27
Last ObjectModification: 2017_07_26-PM-05_12_42

Theory : general


Home Index