Nuprl Lemma : l-ordered-filter2
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  ∀L:T List. ∀P:{x:T| (x ∈ L)}  ⟶ 𝔹.  (l-ordered(T;x,y.R[x;y];L) 
⇒ l-ordered(T;x,y.R[x;y];filter(P;L)))
Proof
Definitions occuring in Statement : 
l-ordered: l-ordered(T;x,y.R[x; y];L)
, 
l_member: (x ∈ l)
, 
filter: filter(P;l)
, 
list: T List
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
top: Top
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
cand: A c∧ B
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
Lemmas referenced : 
list_induction, 
all_wf, 
l_member_wf, 
bool_wf, 
l-ordered_wf, 
filter_wf5, 
list_wf, 
filter_nil_lemma, 
true_wf, 
nil_wf, 
l-ordered-nil-true, 
filter_cons_lemma, 
cons_member, 
cons_wf, 
eqtt_to_assert, 
l-ordered-cons, 
subtype_rel_dep_function, 
subtype_rel_sets, 
equal_wf, 
subtype_rel_self, 
set_wf, 
member_filter_2, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
setEquality, 
cumulativity, 
because_Cache, 
hypothesis, 
setElimination, 
rename, 
applyEquality, 
functionExtensionality, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
addLevel, 
allFunctionality, 
impliesFunctionality, 
productElimination, 
inlFormation, 
dependent_set_memberEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
inrFormation, 
independent_pairFormation, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
productEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}L:T  List.  \mforall{}P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}.
        (l-ordered(T;x,y.R[x;y];L)  {}\mRightarrow{}  l-ordered(T;x,y.R[x;y];filter(P;L)))
Date html generated:
2018_05_21-PM-07_38_27
Last ObjectModification:
2017_07_26-PM-05_12_42
Theory : general
Home
Index