Nuprl Lemma : list_update_select

[T:Type]. ∀[l:T List]. ∀[i:ℤ]. ∀[j:ℕ||l||]. ∀[x:T].  (l[i:=x][j] if (j =z i) then else l[j] fi  ∈ T)


Proof




Definitions occuring in Statement :  list_update: l[i:=x] select: L[n] length: ||as|| list: List int_seg: {i..j-} ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T list_update: l[i:=x] update: f[x:=v] squash: T prop: int_seg: {i..j-} all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False nequal: a ≠ b ∈  lelt: i ≤ j < k decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A top: Top less_than: a < b true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf mklist_select length_wf_nat eq_int_wf bool_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int select_wf int_seg_properties length_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma int_seg_wf iff_weakening_equal eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry because_Cache cumulativity setElimination rename lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate independent_functionElimination voidElimination natural_numberEquality int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation computeAll imageMemberEquality baseClosed universeEquality axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[l:T  List].  \mforall{}[i:\mBbbZ{}].  \mforall{}[j:\mBbbN{}||l||].  \mforall{}[x:T].
    (l[i:=x][j]  =  if  (j  =\msubz{}  i)  then  x  else  l[j]  fi  )



Date html generated: 2018_05_21-PM-06_46_17
Last ObjectModification: 2017_07_26-PM-04_56_04

Theory : general


Home Index