Nuprl Lemma : record+_extensionality
∀[T:Atom ⟶ 𝕌']. ∀[B:record(x.T[x]) ⟶ 𝕌']. ∀[z:Atom]. ∀[r1,r2:record(x.T[x])
                                                               z:B[self]].
  uiff(r1 = r2 ∈ record(x.T[x])z:B[self];(r1 = r2 ∈ record(x.T[x])) ∧ (r1.z = r2.z ∈ B[r1]))
Proof
Definitions occuring in Statement : 
record-select: r.x, 
record+: record+, 
record: record(x.T[x]), 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
atom: Atom, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
record+: record+, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
cand: A c∧ B, 
record-select: r.x, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
nequal: a ≠ b ∈ T , 
not: ¬A, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
top: Top
Lemmas referenced : 
record+_wf, 
istype-atom, 
record_wf, 
istype-universe, 
subtype_rel-equal, 
eq_atom_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
top_wf, 
eqff_to_assert, 
atom_subtype_base, 
bool_subtype_base, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
assert-bnot, 
neg_assert_of_eq_atom, 
equal_wf, 
equal-wf-base, 
assert_wf, 
bnot_wf, 
not_wf, 
istype-assert, 
istype-void, 
uiff_transitivity, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
record-select_wf2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
independent_pairFormation, 
sqequalRule, 
productElimination, 
thin, 
independent_pairEquality, 
axiomEquality, 
hypothesis, 
isect_memberEquality_alt, 
isectElimination, 
hypothesisEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
universeIsType, 
because_Cache, 
extract_by_obid, 
lambdaEquality_alt, 
applyEquality, 
functionIsType, 
instantiate, 
universeEquality, 
dependentIntersectionEqElimination, 
applyLambdaEquality, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
cumulativity, 
equalityIsType1, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
dependent_pairFormation_alt, 
equalityIsType4, 
baseApply, 
closedConclusion, 
baseClosed, 
promote_hyp, 
voidElimination, 
dependentIntersection_memberEquality, 
dependentIntersectionElimination, 
functionExtensionality_alt, 
atomEquality, 
productIsType
Latex:
\mforall{}[T:Atom  {}\mrightarrow{}  \mBbbU{}'].  \mforall{}[B:record(x.T[x])  {}\mrightarrow{}  \mBbbU{}'].  \mforall{}[z:Atom].  \mforall{}[r1,r2:record(x.T[x])
                                                                                                                              z:B[self]].
    uiff(r1  =  r2;(r1  =  r2)  \mwedge{}  (r1.z  =  r2.z))
Date html generated:
2019_10_15-AM-11_28_58
Last ObjectModification:
2018_10_16-PM-02_30_02
Theory : general
Home
Index