Nuprl Lemma : small-sparse-rep
∀r:{-2..3-}
  (∃L:{-1..2-} List [((r = Σi<||L||.L[i]*2^i ∈ ℤ)
                    ∧ (||L|| = 2 ∈ ℤ)
                    ∧ (∀i:ℕ||L|| - 1. ((L[i] = 0 ∈ ℤ) ∨ (L[i + 1] = 0 ∈ ℤ))))])
Proof
Definitions occuring in Statement : 
power-sum: Σi<n.a[i]*x^i
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
subtract: n - m
, 
add: n + m
, 
minus: -n
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
int_seg: {i..j-}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
sq_exists: ∃x:A [B[x]]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
subtract: n - m
, 
power-sum: Σi<n.a[i]*x^i
, 
cand: A c∧ B
, 
sum: Σ(f[x] | x < k)
, 
sum_aux: sum_aux(k;v;i;x.f[x])
, 
select: L[n]
, 
cons: [a / b]
, 
exp: i^n
, 
primrec: primrec(n;b;c)
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
Lemmas referenced : 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
int_seg_properties, 
int_seg_subtype_special, 
int_seg_cases, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
int_seg_wf, 
cons_wf, 
istype-false, 
le_wf, 
less_than_wf, 
nil_wf, 
length_of_cons_lemma, 
length_of_nil_lemma, 
sum_wf, 
select_wf, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
decidable__lt, 
itermAdd_wf, 
int_term_value_add_lemma, 
exp_wf2, 
int_seg_subtype_nat, 
select-cons-hd, 
list_subtype_base, 
set_subtype_base, 
lelt_wf, 
length_wf_nat, 
subtract_wf, 
length_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
intformeq_wf, 
int_formula_prop_eq_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
minusEquality, 
natural_numberEquality, 
unionElimination, 
instantiate, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
hypothesis_subsumption, 
sqequalRule, 
productElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
dependent_set_memberFormation_alt, 
closedConclusion, 
dependent_set_memberEquality_alt, 
imageMemberEquality, 
baseClosed, 
productIsType, 
multiplyEquality, 
addEquality, 
applyEquality, 
inlFormation_alt, 
equalityIsType4, 
inhabitedIsType, 
baseApply, 
functionIsType, 
unionIsType, 
inrFormation_alt
Latex:
\mforall{}r:\{-2..3\msupminus{}\}
    (\mexists{}L:\{-1..2\msupminus{}\}  List  [((r  =  \mSigma{}i<||L||.L[i]*2\^{}i)
                                        \mwedge{}  (||L||  =  2)
                                        \mwedge{}  (\mforall{}i:\mBbbN{}||L||  -  1.  ((L[i]  =  0)  \mvee{}  (L[i  +  1]  =  0))))])
Date html generated:
2019_10_15-AM-11_27_10
Last ObjectModification:
2018_10_11-PM-10_14_48
Theory : general
Home
Index