Nuprl Lemma : small-sparse-rep

r:{-2..3-}
  (∃L:{-1..2-List [((r = Σi<||L||.L[i]*2^i ∈ ℤ)
                    ∧ (||L|| 2 ∈ ℤ)
                    ∧ (∀i:ℕ||L|| 1. ((L[i] 0 ∈ ℤ) ∨ (L[i 1] 0 ∈ ℤ))))])


Proof




Definitions occuring in Statement :  power-sum: Σi<n.a[i]*x^i select: L[n] length: ||as|| list: List int_seg: {i..j-} all: x:A. B[x] sq_exists: x:A [B[x]] or: P ∨ Q and: P ∧ Q subtract: m add: m minus: -n natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T int_seg: {i..j-} decidable: Dec(P) or: P ∨ Q uall: [x:A]. B[x] uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} lelt: i ≤ j < k and: P ∧ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: sq_exists: x:A [B[x]] le: A ≤ B less_than': less_than'(a;b) less_than: a < b squash: T true: True subtract: m power-sum: Σi<n.a[i]*x^i cand: c∧ B sum: Σ(f[x] x < k) sum_aux: sum_aux(k;v;i;x.f[x]) select: L[n] cons: [a b] exp: i^n primrec: primrec(n;b;c) nat: so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s]
Lemmas referenced :  decidable__equal_int subtype_base_sq int_subtype_base int_seg_properties int_seg_subtype_special int_seg_cases full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf cons_wf istype-false le_wf less_than_wf nil_wf length_of_cons_lemma length_of_nil_lemma sum_wf select_wf decidable__le intformnot_wf int_formula_prop_not_lemma decidable__lt itermAdd_wf int_term_value_add_lemma exp_wf2 int_seg_subtype_nat select-cons-hd list_subtype_base set_subtype_base lelt_wf length_wf_nat subtract_wf length_wf itermSubtract_wf int_term_value_subtract_lemma intformeq_wf int_formula_prop_eq_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis minusEquality natural_numberEquality unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination because_Cache independent_functionElimination equalityTransitivity equalitySymmetry hypothesis_subsumption sqequalRule productElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType dependent_set_memberFormation_alt closedConclusion dependent_set_memberEquality_alt imageMemberEquality baseClosed productIsType multiplyEquality addEquality applyEquality inlFormation_alt equalityIsType4 inhabitedIsType baseApply functionIsType unionIsType inrFormation_alt

Latex:
\mforall{}r:\{-2..3\msupminus{}\}
    (\mexists{}L:\{-1..2\msupminus{}\}  List  [((r  =  \mSigma{}i<||L||.L[i]*2\^{}i)
                                        \mwedge{}  (||L||  =  2)
                                        \mwedge{}  (\mforall{}i:\mBbbN{}||L||  -  1.  ((L[i]  =  0)  \mvee{}  (L[i  +  1]  =  0))))])



Date html generated: 2019_10_15-AM-11_27_10
Last ObjectModification: 2018_10_11-PM-10_14_48

Theory : general


Home Index