Nuprl Lemma : sublist-if-no_repeats

[A:Type]
  ∀R:A ⟶ A ⟶ 𝔹. ∀as,bs:A List.
    (StAntiSym(A;x,y.↑R[x;y])
     Irrefl(A;x,y.↑R[x;y])
     Trans(A;x,y.↑R[x;y])
     no_repeats(A;as)
     l-ordered(A;x,y.↑R[x;y];as)
     l-ordered(A;x,y.↑R[x;y];bs)
     (∀a∈as.(a ∈ bs))
     as ⊆ bs)


Proof




Definitions occuring in Statement :  l-ordered: l-ordered(T;x,y.R[x; y];L) sublist: L1 ⊆ L2 l_all: (∀x∈L.P[x]) no_repeats: no_repeats(T;l) l_member: (x ∈ l) list: List irrefl: Irrefl(T;x,y.E[x; y]) st_anti_sym: StAntiSym(T;x,y.R[x; y]) trans: Trans(T;x,y.E[x; y]) assert: b bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_apply: x[s] top: Top uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a iff: ⇐⇒ Q subtype_rel: A ⊆B not: ¬A false: False append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] or: P ∨ Q cand: c∧ B rev_implies:  Q st_anti_sym: StAntiSym(T;x,y.R[x; y]) guard: {T}
Lemmas referenced :  list_induction all_wf list_wf st_anti_sym_wf assert_wf irrefl_wf trans_wf no_repeats_wf l-ordered_wf l_all_wf2 l_member_wf sublist_wf nil-sublist true_wf no_repeats_nil_uiff l-ordered-nil-true l_all_nil_iff nil_wf null_nil_lemma btrue_wf member-implies-null-eq-bfalse btrue_neq_bfalse l-ordered-decomp2 sublist_append cons_wf filter_wf5 list_ind_nil_lemma not_wf no_repeats_cons l-ordered-cons l_all_cons bool_wf cons_sublist_cons l-ordered-append l_all_iff append_wf member_append member_filter_2 member_filter cons_member and_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity hypothesis functionEquality because_Cache applyEquality functionExtensionality setElimination rename setEquality independent_functionElimination isect_memberEquality voidElimination voidEquality addLevel allFunctionality impliesFunctionality productElimination independent_isectElimination equalityTransitivity equalitySymmetry dependent_functionElimination hyp_replacement Error :applyLambdaEquality,  productEquality universeEquality inlFormation independent_pairFormation levelHypothesis promote_hyp unionElimination allLevelFunctionality impliesLevelFunctionality dependent_set_memberEquality

Latex:
\mforall{}[A:Type]
    \mforall{}R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbB{}.  \mforall{}as,bs:A  List.
        (StAntiSym(A;x,y.\muparrow{}R[x;y])
        {}\mRightarrow{}  Irrefl(A;x,y.\muparrow{}R[x;y])
        {}\mRightarrow{}  Trans(A;x,y.\muparrow{}R[x;y])
        {}\mRightarrow{}  no\_repeats(A;as)
        {}\mRightarrow{}  l-ordered(A;x,y.\muparrow{}R[x;y];as)
        {}\mRightarrow{}  l-ordered(A;x,y.\muparrow{}R[x;y];bs)
        {}\mRightarrow{}  (\mforall{}a\mmember{}as.(a  \mmember{}  bs))
        {}\mRightarrow{}  as  \msubseteq{}  bs)



Date html generated: 2016_10_25-AM-10_57_32
Last ObjectModification: 2016_07_12-AM-07_05_08

Theory : general


Home Index