Nuprl Lemma : sublist-if-no_repeats
∀[A:Type]
  ∀R:A ⟶ A ⟶ 𝔹. ∀as,bs:A List.
    (StAntiSym(A;x,y.↑R[x;y])
    
⇒ Irrefl(A;x,y.↑R[x;y])
    
⇒ Trans(A;x,y.↑R[x;y])
    
⇒ no_repeats(A;as)
    
⇒ l-ordered(A;x,y.↑R[x;y];as)
    
⇒ l-ordered(A;x,y.↑R[x;y];bs)
    
⇒ (∀a∈as.(a ∈ bs))
    
⇒ as ⊆ bs)
Proof
Definitions occuring in Statement : 
l-ordered: l-ordered(T;x,y.R[x; y];L)
, 
sublist: L1 ⊆ L2
, 
l_all: (∀x∈L.P[x])
, 
no_repeats: no_repeats(T;l)
, 
l_member: (x ∈ l)
, 
list: T List
, 
irrefl: Irrefl(T;x,y.E[x; y])
, 
st_anti_sym: StAntiSym(T;x,y.R[x; y])
, 
trans: Trans(T;x,y.E[x; y])
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
top: Top
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
subtype_rel: A ⊆r B
, 
not: ¬A
, 
false: False
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
or: P ∨ Q
, 
cand: A c∧ B
, 
rev_implies: P 
⇐ Q
, 
st_anti_sym: StAntiSym(T;x,y.R[x; y])
, 
guard: {T}
Lemmas referenced : 
list_induction, 
all_wf, 
list_wf, 
st_anti_sym_wf, 
assert_wf, 
irrefl_wf, 
trans_wf, 
no_repeats_wf, 
l-ordered_wf, 
l_all_wf2, 
l_member_wf, 
sublist_wf, 
nil-sublist, 
true_wf, 
no_repeats_nil_uiff, 
l-ordered-nil-true, 
l_all_nil_iff, 
nil_wf, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
btrue_neq_bfalse, 
l-ordered-decomp2, 
sublist_append, 
cons_wf, 
filter_wf5, 
list_ind_nil_lemma, 
not_wf, 
no_repeats_cons, 
l-ordered-cons, 
l_all_cons, 
bool_wf, 
cons_sublist_cons, 
l-ordered-append, 
l_all_iff, 
append_wf, 
member_append, 
member_filter_2, 
member_filter, 
cons_member, 
and_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesis, 
functionEquality, 
because_Cache, 
applyEquality, 
functionExtensionality, 
setElimination, 
rename, 
setEquality, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
addLevel, 
allFunctionality, 
impliesFunctionality, 
productElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
hyp_replacement, 
Error :applyLambdaEquality, 
productEquality, 
universeEquality, 
inlFormation, 
independent_pairFormation, 
levelHypothesis, 
promote_hyp, 
unionElimination, 
allLevelFunctionality, 
impliesLevelFunctionality, 
dependent_set_memberEquality
Latex:
\mforall{}[A:Type]
    \mforall{}R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbB{}.  \mforall{}as,bs:A  List.
        (StAntiSym(A;x,y.\muparrow{}R[x;y])
        {}\mRightarrow{}  Irrefl(A;x,y.\muparrow{}R[x;y])
        {}\mRightarrow{}  Trans(A;x,y.\muparrow{}R[x;y])
        {}\mRightarrow{}  no\_repeats(A;as)
        {}\mRightarrow{}  l-ordered(A;x,y.\muparrow{}R[x;y];as)
        {}\mRightarrow{}  l-ordered(A;x,y.\muparrow{}R[x;y];bs)
        {}\mRightarrow{}  (\mforall{}a\mmember{}as.(a  \mmember{}  bs))
        {}\mRightarrow{}  as  \msubseteq{}  bs)
Date html generated:
2016_10_25-AM-10_57_32
Last ObjectModification:
2016_07_12-AM-07_05_08
Theory : general
Home
Index