Nuprl Lemma : l-ordered-decomp2
∀[T:Type]. ∀[R:T ⟶ T ⟶ 𝔹]. ∀[x:T].
  (∀[L:T List]
     (L = (filter(λy.R[y;x];L) @ [x / filter(λy.R[x;y];L)]) ∈ (T List)) supposing 
        (l-ordered(T;x,y.↑R[x;y];L) and 
        (x ∈ L))) supposing 
     (Trans(T;x,y.↑R[x;y]) and 
     Irrefl(T;x,y.↑R[x;y]) and 
     StAntiSym(T;x,y.↑R[x;y]))
Proof
Definitions occuring in Statement : 
l-ordered: l-ordered(T;x,y.R[x; y];L)
, 
l_member: (x ∈ l)
, 
filter: filter(P;l)
, 
append: as @ bs
, 
cons: [a / b]
, 
list: T List
, 
irrefl: Irrefl(T;x,y.E[x; y])
, 
st_anti_sym: StAntiSym(T;x,y.R[x; y])
, 
trans: Trans(T;x,y.E[x; y])
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
or: P ∨ Q
, 
append: as @ bs
, 
so_lambda: so_lambda3, 
so_apply: x[s1;s2;s3]
, 
iff: P 
⇐⇒ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
true: True
, 
cons: [a / b]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
colength: colength(L)
, 
nil: []
, 
it: ⋅
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
squash: ↓T
, 
decidable: Dec(P)
, 
subtype_rel: A ⊆r B
, 
bool: 𝔹
, 
unit: Unit
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
irrefl: Irrefl(T;x,y.E[x; y])
, 
st_anti_sym: StAntiSym(T;x,y.R[x; y])
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
rev_uimplies: rev_uimplies(P;Q)
, 
trans: Trans(T;x,y.E[x; y])
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
list-cases, 
filter_nil_lemma, 
list_ind_nil_lemma, 
istype-void, 
nil_member, 
l-ordered-nil-true, 
assert_wf, 
l-ordered_wf, 
nil_wf, 
l_member_wf, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
istype-le, 
subtract-1-ge-0, 
subtype_base_sq, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
decidable__le, 
le_wf, 
filter_cons_lemma, 
eqtt_to_assert, 
list_ind_cons_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
assert_elim, 
not_assert_elim, 
btrue_neq_bfalse, 
cons_member, 
l-ordered-cons, 
cons_wf, 
istype-nat, 
list_wf, 
trans_wf, 
irrefl_wf, 
st_anti_sym_wf, 
istype-universe, 
iff_imp_equal_bool, 
btrue_wf, 
istype-true, 
equal_wf, 
iff_weakening_equal, 
squash_wf, 
true_wf, 
filter_is_nil, 
l_all_iff, 
not_wf, 
istype-assert, 
filter_trivial, 
assert_functionality_wrt_uiff, 
subtype_rel_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :memTop, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsTypeImplies, 
unionElimination, 
productElimination, 
because_Cache, 
applyEquality, 
promote_hyp, 
hypothesis_subsumption, 
equalityIstype, 
dependent_set_memberEquality_alt, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
imageElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
intEquality, 
sqequalBase, 
equalityElimination, 
cumulativity, 
functionIsType, 
universeEquality, 
imageMemberEquality, 
hyp_replacement, 
productIsType, 
setIsType, 
functionEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x:T].
    (\mforall{}[L:T  List]
          (L  =  (filter(\mlambda{}y.R[y;x];L)  @  [x  /  filter(\mlambda{}y.R[x;y];L)]))  supposing 
                (l-ordered(T;x,y.\muparrow{}R[x;y];L)  and 
                (x  \mmember{}  L)))  supposing 
          (Trans(T;x,y.\muparrow{}R[x;y])  and 
          Irrefl(T;x,y.\muparrow{}R[x;y])  and 
          StAntiSym(T;x,y.\muparrow{}R[x;y]))
Date html generated:
2020_05_20-AM-08_09_24
Last ObjectModification:
2020_01_25-PM-11_57_54
Theory : general
Home
Index