Nuprl Lemma : rng_prod_const_mul
∀[r:CRng]. ∀[c:|r|]. ∀[n:ℕ]. ∀[F:ℕn ⟶ |r|].  ((Π(r) 0 ≤ i < n. F[i] * c) = ((c ↑r n) * (Π(r) 0 ≤ i < n. F[i])) ∈ |r|)
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
, 
rng_nexp: e ↑r n
, 
rng_prod: rng_prod, 
crng: CRng
, 
rng_times: *
, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
crng: CRng
, 
rng: Rng
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
squash: ↓T
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
nat_plus: ℕ+
, 
infix_ap: x f y
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
uiff: uiff(P;Q)
, 
ringeq_int_terms: t1 ≡ t2
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
int_seg_wf, 
rng_car_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
crng_wf, 
rng_prod_empty_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
rng_one_wf, 
rng_times_one, 
rng_nexp_wf, 
false_wf, 
le_wf, 
subtype_rel_self, 
iff_weakening_equal, 
rng_nexp_zero, 
rng_times_wf, 
decidable__lt, 
lelt_wf, 
infix_ap_wf, 
rng_prod_wf, 
rng_prod_unroll_hi, 
rng_nexp_unroll, 
itermAdd_wf, 
itermMultiply_wf, 
itermMinus_wf, 
ringeq-iff-rsub-is-0, 
ring_polynomial_null, 
int-to-ring_wf, 
ring_term_value_add_lemma, 
ring_term_value_mul_lemma, 
ring_term_value_var_lemma, 
ring_term_value_minus_lemma, 
ring_term_value_const_lemma, 
int-to-ring-zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
axiomEquality, 
functionEquality, 
because_Cache, 
unionElimination, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
dependent_set_memberEquality, 
productElimination, 
imageMemberEquality, 
baseClosed, 
instantiate, 
functionExtensionality, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[r:CRng].  \mforall{}[c:|r|].  \mforall{}[n:\mBbbN{}].  \mforall{}[F:\mBbbN{}n  {}\mrightarrow{}  |r|].
    ((\mPi{}(r)  0  \mleq{}  i  <  n.  F[i]  *  c)  =  ((c  \muparrow{}r  n)  *  (\mPi{}(r)  0  \mleq{}  i  <  n.  F[i])))
Date html generated:
2018_05_21-PM-09_33_58
Last ObjectModification:
2018_05_19-PM-04_23_14
Theory : matrices
Home
Index