Nuprl Lemma : rng_prod_const_mul

[r:CRng]. ∀[c:|r|]. ∀[n:ℕ]. ∀[F:ℕn ⟶ |r|].  ((Π(r) 0 ≤ i < n. F[i] c) ((c ↑n) (r) 0 ≤ i < n. F[i])) ∈ |r|)


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: uall: [x:A]. B[x] infix_ap: y so_apply: x[s] function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T rng_nexp: e ↑n rng_prod: rng_prod crng: CRng rng_times: * rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: crng: CRng rng: Rng decidable: Dec(P) or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] squash: T le: A ≤ B less_than': less_than'(a;b) true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q nat_plus: + infix_ap: y int_seg: {i..j-} lelt: i ≤ j < k uiff: uiff(P;Q) ringeq_int_terms: t1 ≡ t2
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_seg_wf rng_car_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf crng_wf rng_prod_empty_lemma equal_wf squash_wf true_wf rng_one_wf rng_times_one rng_nexp_wf false_wf le_wf subtype_rel_self iff_weakening_equal rng_nexp_zero rng_times_wf decidable__lt lelt_wf infix_ap_wf rng_prod_wf rng_prod_unroll_hi rng_nexp_unroll itermAdd_wf itermMultiply_wf itermMinus_wf ringeq-iff-rsub-is-0 ring_polynomial_null int-to-ring_wf ring_term_value_add_lemma ring_term_value_mul_lemma ring_term_value_var_lemma ring_term_value_minus_lemma ring_term_value_const_lemma int-to-ring-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation axiomEquality functionEquality because_Cache unionElimination applyEquality imageElimination equalityTransitivity equalitySymmetry universeEquality dependent_set_memberEquality productElimination imageMemberEquality baseClosed instantiate functionExtensionality hyp_replacement applyLambdaEquality

Latex:
\mforall{}[r:CRng].  \mforall{}[c:|r|].  \mforall{}[n:\mBbbN{}].  \mforall{}[F:\mBbbN{}n  {}\mrightarrow{}  |r|].
    ((\mPi{}(r)  0  \mleq{}  i  <  n.  F[i]  *  c)  =  ((c  \muparrow{}r  n)  *  (\mPi{}(r)  0  \mleq{}  i  <  n.  F[i])))



Date html generated: 2018_05_21-PM-09_33_58
Last ObjectModification: 2018_05_19-PM-04_23_14

Theory : matrices


Home Index