Nuprl Lemma : FOAssigment-rename_wf
∀[Dom:Type]. ∀[x,y:ℤ]. ∀[fmla:mFOL()]. ∀[a:FOAssignment(mFOL-freevars(mFOL-rename(fmla;y;x)),Dom)].
FOAssigment-rename(a;fmla;x;y) ∈ FOAssignment(mFOL-freevars(fmla),Dom) supposing ¬(x ∈ mFOL-boundvars(fmla))
Proof
Definitions occuring in Statement :
FOAssigment-rename: FOAssigment-rename(a;fmla;x;y)
,
mFOL-rename: mFOL-rename(fmla;old;new)
,
mFOL-boundvars: mFOL-boundvars(fmla)
,
mFOL-freevars: mFOL-freevars(fmla)
,
mFOL: mFOL()
,
FOAssignment: FOAssignment(vs,Dom)
,
l_member: (x ∈ l)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
not: ¬A
,
member: t ∈ T
,
int: ℤ
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
FOAssigment-rename: FOAssigment-rename(a;fmla;x;y)
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
iff: P
⇐⇒ Q
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
not: ¬A
,
rev_implies: P
⇐ Q
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
FOAssignment: FOAssignment(vs,Dom)
,
l_contains: A ⊆ B
,
cand: A c∧ B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
true: True
,
istype: istype(T)
,
squash: ↓T
Lemmas referenced :
deq-member_wf,
int-deq_wf,
mFOL-freevars_wf,
eqtt_to_assert,
assert-deq-member,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_wf,
bool_subtype_base,
assert-bnot,
l_member_wf,
mFOL-boundvars_wf,
istype-void,
FOAssignment_wf,
mFOL-rename_wf,
mFOL_wf,
istype-int,
istype-universe,
update-assignment_wf,
subtype_rel_FOAssignment,
int_subtype_base,
assert_wf,
bnot_wf,
eq_int_wf,
not_wf,
equal-wf-base,
istype-assert,
filter_wf5,
iff_transitivity,
iff_weakening_uiff,
assert_of_bnot,
assert_of_eq_int,
member_filter,
mFOL-freevars-of-rename,
l_all_iff,
subtype_rel_wf,
squash_wf,
true_wf,
list_wf,
trivial-mFOL-rename,
iff_weakening_equal
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
intEquality,
hypothesis,
hypothesisEquality,
inhabitedIsType,
lambdaFormation_alt,
unionElimination,
equalityElimination,
equalityTransitivity,
equalitySymmetry,
productElimination,
independent_isectElimination,
dependent_functionElimination,
independent_functionElimination,
sqequalRule,
dependent_pairFormation_alt,
equalityIstype,
promote_hyp,
instantiate,
cumulativity,
because_Cache,
voidElimination,
universeIsType,
axiomEquality,
functionIsType,
isect_memberEquality_alt,
isectIsTypeImplies,
universeEquality,
applyEquality,
inlFormation_alt,
independent_pairFormation,
productIsType,
sqequalBase,
lambdaEquality_alt,
closedConclusion,
setElimination,
rename,
setIsType,
dependent_set_memberEquality_alt,
inrFormation_alt,
natural_numberEquality,
imageElimination,
imageMemberEquality,
baseClosed
Latex:
\mforall{}[Dom:Type]. \mforall{}[x,y:\mBbbZ{}]. \mforall{}[fmla:mFOL()]. \mforall{}[a:FOAssignment(mFOL-freevars(mFOL-rename(fmla;y;x)),Dom)].
FOAssigment-rename(a;fmla;x;y) \mmember{} FOAssignment(mFOL-freevars(fmla),Dom)
supposing \mneg{}(x \mmember{} mFOL-boundvars(fmla))
Date html generated:
2019_10_16-AM-11_39_07
Last ObjectModification:
2018_12_01-AM-00_03_45
Theory : minimal-first-order-logic
Home
Index