Nuprl Lemma : FOAssigment-rename_wf
∀[Dom:Type]. ∀[x,y:ℤ]. ∀[fmla:mFOL()]. ∀[a:FOAssignment(mFOL-freevars(mFOL-rename(fmla;y;x)),Dom)].
  FOAssigment-rename(a;fmla;x;y) ∈ FOAssignment(mFOL-freevars(fmla),Dom) supposing ¬(x ∈ mFOL-boundvars(fmla))
Proof
Definitions occuring in Statement : 
FOAssigment-rename: FOAssigment-rename(a;fmla;x;y), 
mFOL-rename: mFOL-rename(fmla;old;new), 
mFOL-boundvars: mFOL-boundvars(fmla), 
mFOL-freevars: mFOL-freevars(fmla), 
mFOL: mFOL(), 
FOAssignment: FOAssignment(vs,Dom), 
l_member: (x ∈ l), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
member: t ∈ T, 
int: ℤ, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
FOAssigment-rename: FOAssigment-rename(a;fmla;x;y), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
rev_implies: P ⇐ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
FOAssignment: FOAssignment(vs,Dom), 
l_contains: A ⊆ B, 
cand: A c∧ B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
true: True, 
istype: istype(T), 
squash: ↓T
Lemmas referenced : 
deq-member_wf, 
int-deq_wf, 
mFOL-freevars_wf, 
eqtt_to_assert, 
assert-deq-member, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
l_member_wf, 
mFOL-boundvars_wf, 
istype-void, 
FOAssignment_wf, 
mFOL-rename_wf, 
mFOL_wf, 
istype-int, 
istype-universe, 
update-assignment_wf, 
subtype_rel_FOAssignment, 
int_subtype_base, 
assert_wf, 
bnot_wf, 
eq_int_wf, 
not_wf, 
equal-wf-base, 
istype-assert, 
filter_wf5, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
assert_of_eq_int, 
member_filter, 
mFOL-freevars-of-rename, 
l_all_iff, 
subtype_rel_wf, 
squash_wf, 
true_wf, 
list_wf, 
trivial-mFOL-rename, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
hypothesis, 
hypothesisEquality, 
inhabitedIsType, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
sqequalRule, 
dependent_pairFormation_alt, 
equalityIstype, 
promote_hyp, 
instantiate, 
cumulativity, 
because_Cache, 
voidElimination, 
universeIsType, 
axiomEquality, 
functionIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeEquality, 
applyEquality, 
inlFormation_alt, 
independent_pairFormation, 
productIsType, 
sqequalBase, 
lambdaEquality_alt, 
closedConclusion, 
setElimination, 
rename, 
setIsType, 
dependent_set_memberEquality_alt, 
inrFormation_alt, 
natural_numberEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[Dom:Type].  \mforall{}[x,y:\mBbbZ{}].  \mforall{}[fmla:mFOL()].  \mforall{}[a:FOAssignment(mFOL-freevars(mFOL-rename(fmla;y;x)),Dom)].
    FOAssigment-rename(a;fmla;x;y)  \mmember{}  FOAssignment(mFOL-freevars(fmla),Dom) 
    supposing  \mneg{}(x  \mmember{}  mFOL-boundvars(fmla))
Date html generated:
2019_10_16-AM-11_39_07
Last ObjectModification:
2018_12_01-AM-00_03_45
Theory : minimal-first-order-logic
Home
Index