Nuprl Lemma : mFOL-freevars-of-rename
∀fmla:mFOL(). ∀old,new:ℤ.
  ∀x:ℤ
    ((x ∈ mFOL-freevars(mFOL-rename(fmla;old;new)))
    ⇐⇒ ((¬(x = old ∈ ℤ)) ∧ (x ∈ mFOL-freevars(fmla))) ∨ ((x = new ∈ ℤ) ∧ (old ∈ mFOL-freevars(fmla)))) 
  supposing ¬(new ∈ mFOL-boundvars(fmla))
Proof
Definitions occuring in Statement : 
mFOL-rename: mFOL-rename(fmla;old;new), 
mFOL-boundvars: mFOL-boundvars(fmla), 
mFOL-freevars: mFOL-freevars(fmla), 
mFOL: mFOL(), 
l_member: (x ∈ l), 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
not: ¬A, 
or: P ∨ Q, 
and: P ∧ Q, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
guard: {T}, 
mFOquant: mFOquant(isall;var;body), 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
mFOconnect: mFOconnect(knd;left;right), 
false: False, 
not: ¬A, 
mFOL_ind: mFOL_ind, 
mFOatomic: name(vars), 
mFOL-boundvars: mFOL-boundvars(fmla), 
mFOL-rename: mFOL-rename(fmla;old;new), 
mFOL-freevars: mFOL-freevars(fmla), 
implies: P ⇒ Q, 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
and: P ∧ Q, 
or: P ∨ Q, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
prop: ℙ, 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
uall: ∀[x:A]. B[x], 
top: Top, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
nequal: a ≠ b ∈ T , 
assert: ↑b, 
bnot: ¬bb, 
bfalse: ff, 
cand: A c∧ B, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
sq_type: SQType(T), 
exists: ∃x:A. B[x]
Lemmas referenced : 
bool_wf, 
insert_wf, 
int-deq_wf, 
l-union_wf, 
istype-atom, 
list_wf, 
istype-int, 
istype-void, 
nil_wf, 
mFOL_wf, 
int_subtype_base, 
equal-wf-base, 
mFOL-rename_wf, 
mFOL-freevars_wf, 
iff_wf, 
mFOL-boundvars_wf, 
l_member_wf, 
not_wf, 
mFOL-induction, 
member-map, 
member-remove-repeats, 
remove-repeats_wf, 
ifthenelse_wf, 
map_wf, 
int_formula_prop_wf, 
int_formula_prop_not_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
intformnot_wf, 
itermVar_wf, 
intformeq_wf, 
intformand_wf, 
full-omega-unsat, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_eq_int, 
eqtt_to_assert, 
eq_int_wf, 
subtype_base_sq, 
val-union-l-union, 
int-valueall-type, 
member-union, 
member-insert, 
member_filter, 
bnot_wf, 
filter_wf5, 
istype-assert, 
assert_wf, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot
Rules used in proof : 
equalityIstype, 
unionIsType, 
productIsType, 
isectIsType, 
functionIsType, 
rename, 
inhabitedIsType, 
functionIsTypeImplies, 
voidElimination, 
dependent_functionElimination, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
independent_functionElimination, 
universeIsType, 
because_Cache, 
applyEquality, 
productEquality, 
unionEquality, 
hypothesis, 
hypothesisEquality, 
isectEquality, 
intEquality, 
functionEquality, 
lambdaEquality_alt, 
sqequalRule, 
thin, 
isectElimination, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
isect_memberEquality_alt, 
int_eqEquality, 
approximateComputation, 
natural_numberEquality, 
sqequalBase, 
baseClosed, 
closedConclusion, 
baseApply, 
inlFormation_alt, 
promote_hyp, 
dependent_pairFormation_alt, 
inrFormation_alt, 
equalityElimination, 
unionElimination, 
equalitySymmetry, 
equalityTransitivity, 
independent_isectElimination, 
cumulativity, 
instantiate, 
productElimination, 
independent_pairFormation, 
setElimination, 
setIsType, 
Error :memTop
Latex:
\mforall{}fmla:mFOL().  \mforall{}old,new:\mBbbZ{}.
    \mforall{}x:\mBbbZ{}
        ((x  \mmember{}  mFOL-freevars(mFOL-rename(fmla;old;new)))
        \mLeftarrow{}{}\mRightarrow{}  ((\mneg{}(x  =  old))  \mwedge{}  (x  \mmember{}  mFOL-freevars(fmla)))  \mvee{}  ((x  =  new)  \mwedge{}  (old  \mmember{}  mFOL-freevars(fmla)))) 
    supposing  \mneg{}(new  \mmember{}  mFOL-boundvars(fmla))
Date html generated:
2020_05_20-AM-09_08_23
Last ObjectModification:
2020_02_06-PM-01_55_55
Theory : minimal-first-order-logic
Home
Index