Nuprl Lemma : member-iter-subdiv-sub-cube
∀k,n,j:ℕ. ∀K:n-dim-complex. ∀c:ℚCube(k).  ((c ∈ K'^(j)) ⇒ (∃a:ℚCube(k). ((a ∈ K) ∧ rat-sub-cube(k;c;a))))
Proof
Definitions occuring in Statement : 
rat-complex-iter-subdiv: K'^(n), 
rational-cube-complex: n-dim-complex, 
rat-sub-cube: rat-sub-cube(k;a;b), 
rational-cube: ℚCube(k), 
l_member: (x ∈ l), 
nat: ℕ, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
not: ¬A, 
false: False, 
subtype_rel: A ⊆r B, 
rational-cube-complex: n-dim-complex, 
prop: ℙ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rat-complex-iter-subdiv: K'^(n), 
cand: A c∧ B, 
rat-sub-cube: rat-sub-cube(k;a;b), 
rational-cube: ℚCube(k), 
rational-interval: ℚInterval, 
rat-sub-interval: rat-sub-interval(I;J), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q
Lemmas referenced : 
l_member_wf, 
rational-cube_wf, 
rat-complex-iter-subdiv_wf, 
istype-void, 
istype-le, 
rational-cube-complex_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
rat-sub-cube_wf, 
istype-less_than, 
primrec-wf2, 
istype-nat, 
primrec0_lemma, 
int_seg_wf, 
qle_reflexivity, 
qless_wf, 
primrec-unroll, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
member-rat-complex-subdiv-sub-cube, 
rat-sub-cube_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
independent_pairFormation, 
sqequalRule, 
voidElimination, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
because_Cache, 
functionIsType, 
productIsType, 
setIsType, 
functionEquality, 
productEquality, 
productElimination, 
equalityIstype, 
equalityElimination, 
promote_hyp, 
instantiate, 
cumulativity
Latex:
\mforall{}k,n,j:\mBbbN{}.  \mforall{}K:n-dim-complex.  \mforall{}c:\mBbbQ{}Cube(k).
    ((c  \mmember{}  K'\^{}(j))  {}\mRightarrow{}  (\mexists{}a:\mBbbQ{}Cube(k).  ((a  \mmember{}  K)  \mwedge{}  rat-sub-cube(k;c;a))))
Date html generated:
2020_05_20-AM-09_24_32
Last ObjectModification:
2019_11_14-PM-11_00_21
Theory : rationals
Home
Index