Nuprl Lemma : member-iter-subdiv-sub-cube

k,n,j:ℕ. ∀K:n-dim-complex. ∀c:ℚCube(k).  ((c ∈ K'^(j))  (∃a:ℚCube(k). ((a ∈ K) ∧ rat-sub-cube(k;c;a))))


Proof




Definitions occuring in Statement :  rat-complex-iter-subdiv: K'^(n) rational-cube-complex: n-dim-complex rat-sub-cube: rat-sub-cube(k;a;b) rational-cube: Cube(k) l_member: (x ∈ l) nat: all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A false: False subtype_rel: A ⊆B rational-cube-complex: n-dim-complex prop: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top so_lambda: λ2x.t[x] so_apply: x[s] rat-complex-iter-subdiv: K'^(n) cand: c∧ B rat-sub-cube: rat-sub-cube(k;a;b) rational-cube: Cube(k) rational-interval: Interval rat-sub-interval: rat-sub-interval(I;J) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b rev_implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  l_member_wf rational-cube_wf rat-complex-iter-subdiv_wf istype-void istype-le rational-cube-complex_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma rat-sub-cube_wf istype-less_than primrec-wf2 istype-nat primrec0_lemma int_seg_wf qle_reflexivity qless_wf primrec-unroll lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf member-rat-complex-subdiv-sub-cube rat-sub-cube_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation sqequalRule voidElimination applyEquality lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt because_Cache functionIsType productIsType setIsType functionEquality productEquality productElimination equalityIstype equalityElimination promote_hyp instantiate cumulativity

Latex:
\mforall{}k,n,j:\mBbbN{}.  \mforall{}K:n-dim-complex.  \mforall{}c:\mBbbQ{}Cube(k).
    ((c  \mmember{}  K'\^{}(j))  {}\mRightarrow{}  (\mexists{}a:\mBbbQ{}Cube(k).  ((a  \mmember{}  K)  \mwedge{}  rat-sub-cube(k;c;a))))



Date html generated: 2020_05_20-AM-09_24_32
Last ObjectModification: 2019_11_14-PM-11_00_21

Theory : rationals


Home Index