Nuprl Lemma : qexp-minus-one

[n:ℕ]. (-1 ↑ if (n rem =z 0) then else -1 fi  ∈ ℚ)


Proof




Definitions occuring in Statement :  qexp: r ↑ n rationals: nat: ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] remainder: rem m minus: -n natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q eq_int: (i =z j) ifthenelse: if then else fi  btrue: tt subtype_rel: A ⊆B true: True squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q nat_plus: + nequal: a ≠ b ∈  sq_type: SQType(T) bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff bnot: ¬bb assert: b le: A ≤ B less_than': less_than'(a;b) less_than: a < b cand: c∧ B qmul: s callbyvalueall: callbyvalueall evalall: evalall(t)
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf rationals_wf int-subtype-rationals equal_wf squash_wf true_wf qexp-zero iff_weakening_equal exp_unroll_q eq_int_wf subtype_base_sq int_subtype_base equal-wf-base bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int equal-wf-T-base qmul_wf rem_addition le_wf false_wf rem_bounds_1 le_weakening2 decidable__equal_int subtract-add-cancel intformeq_wf int_formula_prop_eq_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality unionElimination minusEquality applyEquality because_Cache imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed productElimination dependent_set_memberEquality remainderEquality addLevel instantiate cumulativity equalityElimination promote_hyp hyp_replacement applyLambdaEquality baseApply closedConclusion inlFormation productEquality inrFormation

Latex:
\mforall{}[n:\mBbbN{}].  (-1  \muparrow{}  n  =  if  (n  rem  2  =\msubz{}  0)  then  1  else  -1  fi  )



Date html generated: 2018_05_22-AM-00_00_40
Last ObjectModification: 2017_07_26-PM-06_49_31

Theory : rationals


Home Index