Nuprl Lemma : qexp-minus-one
∀[n:ℕ]. (-1 ↑ n = if (n rem 2 =z 0) then 1 else -1 fi  ∈ ℚ)
Proof
Definitions occuring in Statement : 
qexp: r ↑ n
, 
rationals: ℚ
, 
nat: ℕ
, 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
uall: ∀[x:A]. B[x]
, 
remainder: n rem m
, 
minus: -n
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
eq_int: (i =z j)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
subtype_rel: A ⊆r B
, 
true: True
, 
squash: ↓T
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
nat_plus: ℕ+
, 
nequal: a ≠ b ∈ T 
, 
sq_type: SQType(T)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
less_than: a < b
, 
cand: A c∧ B
, 
qmul: r * s
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
rationals_wf, 
int-subtype-rationals, 
equal_wf, 
squash_wf, 
true_wf, 
qexp-zero, 
iff_weakening_equal, 
exp_unroll_q, 
eq_int_wf, 
subtype_base_sq, 
int_subtype_base, 
equal-wf-base, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
equal-wf-T-base, 
qmul_wf, 
rem_addition, 
le_wf, 
false_wf, 
rem_bounds_1, 
le_weakening2, 
decidable__equal_int, 
subtract-add-cancel, 
intformeq_wf, 
int_formula_prop_eq_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
unionElimination, 
minusEquality, 
applyEquality, 
because_Cache, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
dependent_set_memberEquality, 
remainderEquality, 
addLevel, 
instantiate, 
cumulativity, 
equalityElimination, 
promote_hyp, 
hyp_replacement, 
applyLambdaEquality, 
baseApply, 
closedConclusion, 
inlFormation, 
productEquality, 
inrFormation
Latex:
\mforall{}[n:\mBbbN{}].  (-1  \muparrow{}  n  =  if  (n  rem  2  =\msubz{}  0)  then  1  else  -1  fi  )
Date html generated:
2018_05_22-AM-00_00_40
Last ObjectModification:
2017_07_26-PM-06_49_31
Theory : rationals
Home
Index