Nuprl Lemma : funtype-unroll-last

[T,A:Top]. ∀[n:ℕ].  (funtype(n;A;T) if (n =z 0) then else funtype(n 1;A;(A (n 1)) ⟶ T) fi )


Proof




Definitions occuring in Statement :  funtype: funtype(n;A;T) nat: ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] top: Top apply: a function: x:A ⟶ B[x] subtract: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt funtype: funtype(n;A;T) decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈  subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf top_wf primrec0_lemma decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int nat_wf int_subtype_base decidable__equal_int primrec1_lemma assert_wf bnot_wf not_wf equal-wf-base primrec-unroll general_arith_equation2 subtract-add-cancel bool_cases iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination because_Cache promote_hyp instantiate baseApply closedConclusion baseClosed applyEquality cumulativity impliesFunctionality

Latex:
\mforall{}[T,A:Top].  \mforall{}[n:\mBbbN{}].
    (funtype(n;A;T)  \msim{}  if  (n  =\msubz{}  0)  then  T  else  funtype(n  -  1;A;(A  (n  -  1))  {}\mrightarrow{}  T)  fi  )



Date html generated: 2017_10_01-AM-08_39_41
Last ObjectModification: 2017_07_26-PM-04_27_39

Theory : untyped!computation


Home Index