Nuprl Lemma : funtype-unroll-last
∀[T,A:Top]. ∀[n:ℕ]. (funtype(n;A;T) ~ if (n =z 0) then T else funtype(n - 1;A;(A (n - 1)) ⟶ T) fi )
Proof
Definitions occuring in Statement :
funtype: funtype(n;A;T)
,
nat: ℕ
,
ifthenelse: if b then t else f fi
,
eq_int: (i =z j)
,
uall: ∀[x:A]. B[x]
,
top: Top
,
apply: f a
,
function: x:A ⟶ B[x]
,
subtract: n - m
,
natural_number: $n
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
not: ¬A
,
all: ∀x:A. B[x]
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
eq_int: (i =z j)
,
subtract: n - m
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
funtype: funtype(n;A;T)
,
decidable: Dec(P)
,
or: P ∨ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
uiff: uiff(P;Q)
,
bfalse: ff
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
nequal: a ≠ b ∈ T
,
subtype_rel: A ⊆r B
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
nat_properties,
satisfiable-full-omega-tt,
intformand_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
ge_wf,
less_than_wf,
top_wf,
primrec0_lemma,
decidable__le,
subtract_wf,
intformnot_wf,
itermSubtract_wf,
int_formula_prop_not_lemma,
int_term_value_subtract_lemma,
eq_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_eq_int,
intformeq_wf,
int_formula_prop_eq_lemma,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_int,
nat_wf,
int_subtype_base,
decidable__equal_int,
primrec1_lemma,
assert_wf,
bnot_wf,
not_wf,
equal-wf-base,
primrec-unroll,
general_arith_equation2,
subtract-add-cancel,
bool_cases,
iff_transitivity,
iff_weakening_uiff,
assert_of_bnot
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
thin,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
hypothesisEquality,
hypothesis,
setElimination,
rename,
intWeakElimination,
lambdaFormation,
natural_numberEquality,
independent_isectElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
sqequalRule,
independent_pairFormation,
computeAll,
independent_functionElimination,
sqequalAxiom,
unionElimination,
equalityElimination,
equalityTransitivity,
equalitySymmetry,
productElimination,
because_Cache,
promote_hyp,
instantiate,
baseApply,
closedConclusion,
baseClosed,
applyEquality,
cumulativity,
impliesFunctionality
Latex:
\mforall{}[T,A:Top]. \mforall{}[n:\mBbbN{}].
(funtype(n;A;T) \msim{} if (n =\msubz{} 0) then T else funtype(n - 1;A;(A (n - 1)) {}\mrightarrow{} T) fi )
Date html generated:
2017_10_01-AM-08_39_41
Last ObjectModification:
2017_07_26-PM-04_27_39
Theory : untyped!computation
Home
Index