Nuprl Lemma : mk_applies_roll
∀[F,G,x:Top]. ∀[m:ℕ].  (mk_applies(F;G;m) x ~ mk_applies(F;λi.if (i =z m) then x else G i fi m + 1))
Proof
Definitions occuring in Statement : 
mk_applies: mk_applies(F;G;m), 
nat: ℕ, 
ifthenelse: if b then t else f fi , 
eq_int: (i =z j), 
uall: ∀[x:A]. B[x], 
top: Top, 
apply: f a, 
lambda: λx.A[x], 
add: n + m, 
natural_number: $n, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
top: Top, 
nat_plus: ℕ+, 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
subtract: n - m, 
subtype_rel: A ⊆r B, 
less_than': less_than'(a;b), 
true: True, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
nequal: a ≠ b ∈ T , 
ge: i ≥ j 
Lemmas referenced : 
mk_applies_unroll, 
decidable__lt, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
less_than_wf, 
eq_int_wf, 
subtract_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
add-subtract-cancel, 
mk_applies_fun, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
lelt_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
nat_properties, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
nat_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
addEquality, 
setElimination, 
rename, 
hypothesis, 
natural_numberEquality, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
independent_pairFormation, 
lambdaFormation, 
independent_functionElimination, 
independent_isectElimination, 
applyEquality, 
because_Cache, 
minusEquality, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
computeAll, 
promote_hyp, 
instantiate, 
cumulativity, 
sqequalAxiom
Latex:
\mforall{}[F,G,x:Top].  \mforall{}[m:\mBbbN{}].
    (mk\_applies(F;G;m)  x  \msim{}  mk\_applies(F;\mlambda{}i.if  (i  =\msubz{}  m)  then  x  else  G  i  fi  ;m  +  1))
Date html generated:
2017_10_01-AM-08_40_28
Last ObjectModification:
2017_07_26-PM-04_28_07
Theory : untyped!computation
Home
Index