Nuprl Lemma : mk_applies_roll

[F,G,x:Top]. ∀[m:ℕ].  (mk_applies(F;G;m) mk_applies(F;λi.if (i =z m) then else fi ;m 1))


Proof




Definitions occuring in Statement :  mk_applies: mk_applies(F;G;m) nat: ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] top: Top apply: a lambda: λx.A[x] add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top nat_plus: + nat: le: A ≤ B and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False prop: uiff: uiff(P;Q) uimplies: supposing a subtract: m subtype_rel: A ⊆B less_than': less_than'(a;b) true: True bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  int_seg: {i..j-} lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈  ge: i ≥ 
Lemmas referenced :  mk_applies_unroll decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel less_than_wf eq_int_wf subtract_wf bool_wf eqtt_to_assert assert_of_eq_int add-subtract-cancel mk_applies_fun satisfiable-full-omega-tt intformnot_wf intformless_wf itermVar_wf itermAdd_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf lelt_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int nat_properties intformeq_wf int_formula_prop_eq_lemma nat_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality isect_memberEquality voidElimination voidEquality dependent_set_memberEquality addEquality setElimination rename hypothesis natural_numberEquality productElimination dependent_functionElimination unionElimination independent_pairFormation lambdaFormation independent_functionElimination independent_isectElimination applyEquality because_Cache minusEquality equalityElimination equalityTransitivity equalitySymmetry dependent_pairFormation lambdaEquality int_eqEquality intEquality computeAll promote_hyp instantiate cumulativity sqequalAxiom

Latex:
\mforall{}[F,G,x:Top].  \mforall{}[m:\mBbbN{}].
    (mk\_applies(F;G;m)  x  \msim{}  mk\_applies(F;\mlambda{}i.if  (i  =\msubz{}  m)  then  x  else  G  i  fi  ;m  +  1))



Date html generated: 2017_10_01-AM-08_40_28
Last ObjectModification: 2017_07_26-PM-04_28_07

Theory : untyped!computation


Home Index