Nuprl Lemma : implies-isometry-lemma3
∀rv:InnerProductSpace. ∀f:Point(rv) ⟶ Point(rv). ∀r:{r:ℝ| r0 < r} .
  ((∀x,y:Point(rv).  (x ≡ y ⇒ f x ≡ f y))
  ⇒ (∀x,y:Point(rv).  (((||x - y|| = r) ∨ (||x - y|| = (r(2) * r))) ⇒ (||f x - f y|| = ||x - y||)))
  ⇒ (∀n,m:ℕ+. ∀x,y:Point(rv).  ((||x - y|| = (r(n) * r/r(m))) ⇒ (||f x - f y|| = ||x - y||))))
Proof
Definitions occuring in Statement : 
rv-norm: ||x||, 
rv-sub: x - y, 
inner-product-space: InnerProductSpace, 
rdiv: (x/y), 
rless: x < y, 
req: x = y, 
rmul: a * b, 
int-to-real: r(n), 
real: ℝ, 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
or: P ∨ Q, 
set: {x:A| B[x]} , 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
or: P ∨ Q, 
prop: ℙ, 
guard: {T}, 
uimplies: b supposing a, 
stable: Stable{P}, 
not: ¬A, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q), 
false: False, 
nat_plus: ℕ+, 
rneq: x ≠ y, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
sq_stable: SqStable(P), 
squash: ↓T, 
rless: x < y, 
sq_exists: ∃x:A [B[x]], 
rdiv: (x/y), 
req_int_terms: t1 ≡ t2, 
ip-congruent: ab=cd, 
true: True, 
rv-sub: x - y, 
rv-minus: -x, 
nat: ℕ, 
real: ℝ, 
top: Top, 
rat_term_to_real: rat_term_to_real(f;t), 
rtermVar: rtermVar(var), 
rat_term_ind: rat_term_ind, 
pi1: fst(t), 
rtermMultiply: left "*" right, 
rtermDivide: num "/" denom, 
pi2: snd(t)
Lemmas referenced : 
implies-isometry-lemma2, 
Error :ss-point_wf, 
req_wf, 
rv-norm_wf, 
rv-sub_wf, 
inner-product-space_subtype, 
rmul_wf, 
int-to-real_wf, 
Error :ss-eq_wf, 
real_wf, 
rless_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
Error :separation-space_wf, 
stable_req, 
minimal-double-negation-hyp-elim, 
false_wf, 
not_wf, 
req_functionality, 
req_weakening, 
req-same, 
istype-void, 
minimal-not-not-excluded-middle, 
rdiv_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
nat_plus_wf, 
rmul-is-positive, 
sq_stable__rless, 
rmul_preserves_rless, 
rinv_wf2, 
itermSubtract_wf, 
itermMultiply_wf, 
req_transitivity, 
rmul-rinv3, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
rless_functionality, 
iff_weakening_uiff, 
ip-circle-circle-lemma3, 
rv-add_wf, 
rv-mul_wf, 
Error :ss-sep_wf, 
ip-congruent_wf, 
rleq_wf, 
rv-sep-iff-norm, 
req_inversion, 
rless_transitivity1, 
rleq_weakening, 
radd_wf, 
rv-minus_wf, 
rminus_wf, 
itermMinus_wf, 
itermAdd_wf, 
rabs_wf, 
subtract_wf, 
rsub_wf, 
uiff_transitivity, 
Error :ss-eq_functionality, 
Error :ss-eq_weakening, 
rv-mul-linear, 
rv-add_functionality, 
rv-add-assoc, 
rv-mul-mul, 
rv-mul-1-add, 
rv-add-comm, 
rv-mul-add-alt, 
rv-mul_functionality, 
rminus-int, 
radd_functionality, 
rmul_functionality, 
squash_wf, 
true_wf, 
real_term_value_minus_lemma, 
real_term_value_add_lemma, 
rleq_functionality, 
rv-norm_functionality, 
rv-norm-mul, 
Error :ss-eq_transitivity, 
rv-add-swap, 
rv-mul-1-add-alt, 
rv-mul-add, 
radd-int, 
rsub-int, 
rminus_functionality, 
rabs-int, 
absval-minus, 
subtype_rel_self, 
iff_weakening_equal, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
int_term_value_subtract_lemma, 
istype-le, 
nat_plus_subtype_nat, 
rleq-int, 
sq_stable__less_than, 
absval_pos, 
rmul_preserves_rleq2, 
absval_wf, 
rv-norm-nonneg, 
sq_stable__and, 
sq_stable__req, 
req_witness, 
rabs-of-nonneg, 
rv-norm-difference-symmetry, 
rv-0_wf, 
rinv-as-rdiv, 
rmul-rinv, 
rv-mul1, 
rv-mul0, 
rv-0-add, 
rv-sub_functionality, 
rmul_preserves_req, 
Error :ss-eq_inversion, 
rv-mul-cancel, 
rmul-int, 
rleq-int-fractions2, 
int_term_value_mul_lemma, 
assert-rat-term-eq2, 
rtermMultiply_wf, 
rtermDivide_wf, 
rtermVar_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
sqequalRule, 
functionIsType, 
universeIsType, 
isectElimination, 
applyEquality, 
because_Cache, 
unionIsType, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
setIsType, 
instantiate, 
independent_isectElimination, 
unionEquality, 
functionEquality, 
unionElimination, 
productElimination, 
voidElimination, 
inrFormation_alt, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
inlFormation_alt, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productIsType, 
equalityIstype, 
promote_hyp, 
dependent_set_memberEquality_alt, 
minusEquality, 
addEquality, 
universeEquality, 
isect_memberEquality_alt, 
functionIsTypeImplies, 
closedConclusion, 
multiplyEquality
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}f:Point(rv)  {}\mrightarrow{}  Point(rv).  \mforall{}r:\{r:\mBbbR{}|  r0  <  r\}  .
    ((\mforall{}x,y:Point(rv).    (x  \mequiv{}  y  {}\mRightarrow{}  f  x  \mequiv{}  f  y))
    {}\mRightarrow{}  (\mforall{}x,y:Point(rv).
                (((||x  -  y||  =  r)  \mvee{}  (||x  -  y||  =  (r(2)  *  r)))  {}\mRightarrow{}  (||f  x  -  f  y||  =  ||x  -  y||)))
    {}\mRightarrow{}  (\mforall{}n,m:\mBbbN{}\msupplus{}.  \mforall{}x,y:Point(rv).    ((||x  -  y||  =  (r(n)  *  r/r(m)))  {}\mRightarrow{}  (||f  x  -  f  y||  =  ||x  -  y||))))
Date html generated:
2020_05_20-PM-01_15_59
Last ObjectModification:
2020_01_06-PM-03_52_13
Theory : inner!product!spaces
Home
Index