Nuprl Lemma : unit-cube-to-unit-ball

n:ℕ+
  ∃g:ℝ^n ⟶ ℝ^n
   ((∀p:ℝ^n. (req-vec(n;p;λi.r0)  p ≡ λi.r0))
   ∧ (∀p:{p:ℝ^n| r0 < ||p||} p ≡ p.(mdist(max-metric(n);λi.r0;p)/||p||)*p) p)
   ∧ (g ∈ {q:ℝ^n| mdist(max-metric(n);λi.r0;q) ≤ r1}  ⟶ {q:ℝ^n| mdist(rn-metric(n);λi.r0;q) ≤ r1} )
   ∧ g:FUN(ℝ^n;ℝ^n))


Proof




Definitions occuring in Statement :  max-metric: max-metric(n) rn-metric: rn-metric(n) real-vec-norm: ||x|| real-vec-mul: a*X req-vec: req-vec(n;x;y) real-vec: ^n is-mfun: f:FUN(X;Y) mdist: mdist(d;x;y) meq: x ≡ y rdiv: (x/y) rleq: x ≤ y rless: x < y int-to-real: r(n) nat_plus: + all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  apply: a lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  subtract: m genrec: genrec efficient-exp-ext fastexp: i^n rroot-abs: rroot-abs(i;x) btrue: tt remainder: rem m modulus: mod n eq_int: (i =z j) isEven: isEven(n) ifthenelse: if then else fi  rroot: rroot(i;x) rsqrt: rsqrt(x) real-vec-norm: ||x|| real-vec-dist: d(x;y) meq: x ≡ y is-mfun: f:FUN(X;Y) respects-equality: respects-equality(S;T) so_apply: x[s] so_lambda: λ2x.t[x] cand: c∧ B stable: Stable{P} true: True rdiv: (x/y) real: squash: T sq_stable: SqStable(P) less_than': less_than'(a;b) rneq: x ≠ y req_int_terms: t1 ≡ t2 iff: ⇐⇒ Q rev_implies:  Q scale-metric: c*d rless: x < y sq_exists: x:A [B[x]] guard: {T} rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) prop: top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) nat: mdist: mdist(d;x;y) rn-metric: rn-metric(n) nat_plus: + le: A ≤ B and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} real-vec: ^n metric-leq: d1 ≤ d2 subtype_rel: A ⊆B member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x]
Lemmas referenced :  meq-same req-vec_weakening real-vec-norm_functionality rdiv_functionality real-vec-mul_functionality req-vec_functionality real-vec-dist-identity metric-on-subtype rn-metric-meq meq-max-metric is-mfun_wf respects-equality-set-trivial respects-equality-function subtype_rel_dep_function meq_wf mdist-same mdist-rn-metric-mul meq_weakening mdist_functionality minimal-not-not-excluded-middle minimal-double-negation-hyp-elim real-vec-norm-nonneg rleq_antisymmetry real-vec-norm-is-0 not-rless not_wf false_wf stable__rleq req-vec_wf meq-max-metric-iff-meq-rn-metric rinv-mul-as-rdiv rabs_functionality mdist-nonneg mdist-symm squash_wf true_wf real_wf subtype_rel_self iff_weakening_equal rmul-int rmul-rinv rmul_functionality rmul-rinv3 req_transitivity rabs-of-nonneg rmul_preserves_rleq rinv_wf2 rleq_weakening_rless rmul_preserves_rleq2 sq_stable__less_than rleq_transitivity mdist-max-metric-mul rabs_wf sq_stable__rless max-metric-complete istype-false remove-singularity-mfun rdiv_wf real-vec-mul_wf real_term_value_var_lemma real_term_value_const_lemma real_term_value_mul_lemma real_term_value_sub_lemma real_polynomial_null req-iff-rsub-is-0 rless_functionality rleq_functionality mdist_wf rn-metric_wf scale-metric_wf rleq-int rleq_wf max-metric_wf rmul_preserves_rless rless-int decidable__lt rless_wf rless_transitivity1 rmul_wf itermSubtract_wf itermMultiply_wf req_weakening real-vec-dist-symmetry req_functionality real-vec-dist-from-zero real-vec-norm_wf real-vec-dist_wf istype-le int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int intformless_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_plus_properties real-vec_wf int_seg_wf int-to-real_wf nat_plus_wf rn-metric-leq-max-metric nat_plus_subtype_nat max-metric-leq-rn-metric efficient-exp-ext
Rules used in proof :  productIsType unionIsType functionEquality unionEquality setEquality functionExtensionality instantiate universeEquality addEquality promote_hyp equalityIstype imageElimination baseClosed imageMemberEquality functionIsType closedConclusion equalitySymmetry equalityTransitivity inhabitedIsType setIsType inrFormation_alt independent_pairFormation voidElimination isect_memberEquality_alt int_eqEquality dependent_pairFormation_alt independent_functionElimination approximateComputation independent_isectElimination unionElimination dependent_set_memberEquality_alt natural_numberEquality productElimination rename setElimination lambdaEquality_alt dependent_functionElimination universeIsType because_Cache sqequalRule hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}n:\mBbbN{}\msupplus{}
    \mexists{}g:\mBbbR{}\^{}n  {}\mrightarrow{}  \mBbbR{}\^{}n
      ((\mforall{}p:\mBbbR{}\^{}n.  (req-vec(n;p;\mlambda{}i.r0)  {}\mRightarrow{}  g  p  \mequiv{}  \mlambda{}i.r0))
      \mwedge{}  (\mforall{}p:\{p:\mBbbR{}\^{}n|  r0  <  ||p||\}  .  g  p  \mequiv{}  (\mlambda{}p.(mdist(max-metric(n);\mlambda{}i.r0;p)/||p||)*p)  p)
      \mwedge{}  (g  \mmember{}  \{q:\mBbbR{}\^{}n|  mdist(max-metric(n);\mlambda{}i.r0;q)  \mleq{}  r1\}    {}\mrightarrow{}  \{q:\mBbbR{}\^{}n|  mdist(rn-metric(n);\mlambda{}i.r0;q)  \mleq{}  r1\}  )
      \mwedge{}  g:FUN(\mBbbR{}\^{}n;\mBbbR{}\^{}n))



Date html generated: 2019_10_30-AM-11_25_27
Last ObjectModification: 2019_10_29-PM-01_08_34

Theory : real!vectors


Home Index