Nuprl Lemma : int_op_minus
∀[g:Group{i}]. ∀[e:|g|]. ∀[a:ℤ].  (-a x(*;e;~) e = (~ a x(*;e;~) e) ∈ |g|)
Proof
Definitions occuring in Statement : 
int_op: i x(op;id;inv) e
, 
grp: Group{i}
, 
grp_inv: ~
, 
grp_id: e
, 
grp_op: *
, 
grp_car: |g|
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
minus: -n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
grp: Group{i}
, 
mon: Mon
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
int_op: i x(op;id;inv) e
, 
le_int: i ≤z j
, 
lt_int: i <z j
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
, 
squash: ↓T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
imon: IMonoid
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
nat: ℕ
, 
le: A ≤ B
Lemmas referenced : 
grp_car_wf, 
grp_wf, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
minus-zero, 
equal_wf, 
squash_wf, 
true_wf, 
nat_op_zero, 
grp_sig_wf, 
monoid_p_wf, 
grp_op_wf, 
grp_id_wf, 
inverse_wf, 
grp_inv_wf, 
iff_weakening_equal, 
grp_inv_id, 
grp_subtype_igrp, 
le_int_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-base, 
assert_wf, 
le_wf, 
eqtt_to_assert, 
assert_of_le_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
itermMinus_wf, 
intformnot_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_minus_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
lt_int_wf, 
less_than_wf, 
bnot_wf, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_le_int, 
assert_of_lt_int, 
nat_op_wf, 
grp_inv_inv, 
nat_wf, 
imon_wf, 
minus-minus, 
intformless_wf, 
int_formula_prop_less_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
intEquality, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
because_Cache, 
extract_by_obid, 
setElimination, 
rename, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
instantiate, 
cumulativity, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
universeEquality, 
setEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
minusEquality, 
lambdaFormation, 
equalityElimination, 
baseApply, 
closedConclusion, 
dependent_pairFormation, 
int_eqEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
dependent_set_memberEquality
Latex:
\mforall{}[g:Group\{i\}].  \mforall{}[e:|g|].  \mforall{}[a:\mBbbZ{}].    (-a  x(*;e;\msim{})  e  =  (\msim{}  a  x(*;e;\msim{})  e))
Date html generated:
2017_10_01-AM-08_16_13
Last ObjectModification:
2017_02_28-PM-02_01_12
Theory : groups_1
Home
Index