Nuprl Lemma : int_op_minus

[g:Group{i}]. ∀[e:|g|]. ∀[a:ℤ].  (-a x(*;e;~) (~ x(*;e;~) e) ∈ |g|)


Proof




Definitions occuring in Statement :  int_op: x(op;id;inv) e grp: Group{i} grp_inv: ~ grp_id: e grp_op: * grp_car: |g| uall: [x:A]. B[x] apply: a minus: -n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T grp: Group{i} mon: Mon all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} int_op: x(op;id;inv) e le_int: i ≤j lt_int: i <j bnot: ¬bb ifthenelse: if then else fi  bfalse: ff btrue: tt squash: T prop: subtype_rel: A ⊆B imon: IMonoid true: True iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top nat: le: A ≤ B
Lemmas referenced :  grp_car_wf grp_wf decidable__equal_int subtype_base_sq int_subtype_base minus-zero equal_wf squash_wf true_wf nat_op_zero grp_sig_wf monoid_p_wf grp_op_wf grp_id_wf inverse_wf grp_inv_wf iff_weakening_equal grp_inv_id grp_subtype_igrp le_int_wf bool_wf uiff_transitivity equal-wf-base assert_wf le_wf eqtt_to_assert assert_of_le_int satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf itermMinus_wf intformnot_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_minus_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_formula_prop_wf lt_int_wf less_than_wf bnot_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int nat_op_wf grp_inv_inv nat_wf imon_wf minus-minus intformless_wf int_formula_prop_less_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis intEquality sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality because_Cache extract_by_obid setElimination rename dependent_functionElimination natural_numberEquality unionElimination instantiate cumulativity independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination applyEquality lambdaEquality imageElimination universeEquality setEquality imageMemberEquality baseClosed productElimination minusEquality lambdaFormation equalityElimination baseApply closedConclusion dependent_pairFormation int_eqEquality voidElimination voidEquality independent_pairFormation computeAll dependent_set_memberEquality

Latex:
\mforall{}[g:Group\{i\}].  \mforall{}[e:|g|].  \mforall{}[a:\mBbbZ{}].    (-a  x(*;e;\msim{})  e  =  (\msim{}  a  x(*;e;\msim{})  e))



Date html generated: 2017_10_01-AM-08_16_13
Last ObjectModification: 2017_02_28-PM-02_01_12

Theory : groups_1


Home Index