Nuprl Lemma : p-1-mul

[p:{2...}]. ∀[a:p-adics(p)].  (a 1(p) a ∈ p-adics(p))


Proof




Definitions occuring in Statement :  p-int: k(p) p-mul: y p-adics: p-adics(p) int_upper: {i...} uall: [x:A]. B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T crng: CRng rng: Rng p-adic-ring: (p) ring_p: IsRing(T;plus;zero;neg;times;one) rng_car: |r| pi1: fst(t) rng_plus: +r pi2: snd(t) rng_zero: 0 rng_minus: -r rng_times: * rng_one: 1 monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) bilinear: BiLinear(T;pl;tm) ident: Ident(T;op;id) assoc: Assoc(T;op) inverse: Inverse(T;op;id;inv) infix_ap: y comm: Comm(T;op) and: P ∧ Q all: x:A. B[x] nat_plus: + int_upper: {i...} le: A ≤ B decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False prop: uiff: uiff(P;Q) uimplies: supposing a subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True guard: {T} satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] p-adics: p-adics(p) so_lambda: λ2x.t[x] subtract: m int_seg: {i..j-} nat: lelt: i ≤ j < k so_apply: x[s]
Lemmas referenced :  p-adic-ring_wf crng_properties rng_properties p-adic-property decidable__lt false_wf not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel less_than_wf p-mul_wf p-int_wf nat_plus_properties int_upper_properties decidable__le full-omega-unsat intformnot_wf intformle_wf itermVar_wf itermAdd_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf le_wf nat_plus_wf p-adics_wf all_wf eqmod_wf exp_wf2 nat_plus_subtype_nat less-iff-le condition-implies-le minus-add minus-one-mul minus-one-mul-top add-associates add-zero int_seg_wf int_seg_properties intformand_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_upper_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality equalityTransitivity equalitySymmetry applyLambdaEquality setElimination rename sqequalRule productElimination lambdaFormation dependent_functionElimination dependent_set_memberEquality natural_numberEquality unionElimination independent_pairFormation voidElimination independent_functionElimination independent_isectElimination applyEquality lambdaEquality isect_memberEquality voidEquality intEquality because_Cache addEquality approximateComputation dependent_pairFormation int_eqEquality minusEquality

Latex:
\mforall{}[p:\{2...\}].  \mforall{}[a:p-adics(p)].    (a  *  1(p)  =  a)



Date html generated: 2018_05_21-PM-03_21_10
Last ObjectModification: 2018_05_19-AM-08_18_26

Theory : rings_1


Home Index