Nuprl Lemma : oal_dom_neg
∀a:LOSet. ∀b:AbDGrp. ∀ps:|oal(a;b)|.  (dom(--ps) = dom(ps) ∈ FiniteSet{a})
Proof
Definitions occuring in Statement : 
oal_neg: --ps, 
oal_dom: dom(ps), 
oalist: oal(a;b), 
finite_set: FiniteSet{s}, 
all: ∀x:A. B[x], 
equal: s = t ∈ T, 
abdgrp: AbDGrp, 
loset: LOSet, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
abdgrp: AbDGrp, 
abgrp: AbGrp, 
grp: Group{i}, 
abdmonoid: AbDMon, 
dmon: DMon, 
uall: ∀[x:A]. B[x], 
mon: Mon, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
implies: P ⇒ Q, 
sq_stable: SqStable(P), 
squash: ↓T, 
finite_set: FiniteSet{s}, 
loset: LOSet, 
poset: POSet{i}, 
qoset: QOSet, 
dset: DSet, 
nat: ℕ, 
oal_dom: dom(ps), 
set_prod: s × t, 
mk_dset: mk_dset(T, eq), 
set_car: |p|, 
pi1: fst(t), 
oalist: oal(a;b), 
dset_set: dset_set, 
dset_list: s List, 
dset_of_mon: g↓set, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
true: True, 
guard: {T}
Lemmas referenced : 
oal_dom_wf2, 
subtype_rel_sets, 
mon_wf, 
inverse_wf, 
grp_car_wf, 
grp_op_wf, 
grp_id_wf, 
grp_inv_wf, 
comm_wf, 
eqfun_p_wf, 
grp_eq_wf, 
set_wf, 
sq_stable__comm, 
set_car_wf, 
all_wf, 
le_wf, 
mset_count_wf, 
nat_wf, 
oalist_wf, 
abdgrp_wf, 
loset_wf, 
equal_mset_elim, 
map_wf, 
set_prod_wf, 
dset_of_mon_wf, 
oal_neg_wf, 
permr_weakening, 
equal_wf, 
squash_wf, 
true_wf, 
list_wf, 
dset_wf, 
oal_neg_keys_invar, 
iff_weakening_equal, 
fset_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
instantiate, 
isectElimination, 
setEquality, 
hypothesis, 
cumulativity, 
setElimination, 
rename, 
because_Cache, 
lambdaEquality, 
independent_isectElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
equalitySymmetry, 
productElimination, 
productEquality, 
equalityTransitivity, 
universeEquality
Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDGrp.  \mforall{}ps:|oal(a;b)|.    (dom(--ps)  =  dom(ps))
Date html generated:
2017_10_01-AM-10_03_17
Last ObjectModification:
2017_03_03-PM-01_06_00
Theory : polynom_2
Home
Index