Nuprl Lemma : es-interface-count-as-accum

[Info:Type]. ∀[X:EClass(Top)].  (#X es-interface-accum(λn,x. (n 1);0;X) ∈ EClass(ℕ))


Proof




Definitions occuring in Statement :  es-interface-accum: es-interface-accum(f;x;X) es-interface-count: #X eclass: EClass(A[eo; e]) nat: uall: [x:A]. B[x] top: Top lambda: λx.A[x] add: m natural_number: $n universe: Type equal: t ∈ T
Lemmas :  es-interface-extensionality nat_wf es-interface-count_wf es-interface-accum_wf top_wf false_wf le_wf decidable__le not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul zero-add add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel in-eclass_wf bool_wf eqtt_to_assert bag_size_single_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot bag_size_empty_lemma es-E_wf event-ordering+_subtype is-interface-accum is-interface-count assert_wf es-interface-subtype_rel2 subtype_top eclass_wf event-ordering+_wf es-interface-count-val es-interface-accum-val es-interface-predecessors_wf subtype_rel_list es-E-interface_wf Id_wf es-loc_wf list_wf list_induction all_wf list_accum_wf length_wf list_accum_nil_lemma length_of_nil_lemma list_accum_cons_lemma length_of_cons_lemma iff_weakening_equal zero-le-nat length_wf_nat

Latex:
\mforall{}[Info:Type].  \mforall{}[X:EClass(Top)].    (\#X  =  es-interface-accum(\mlambda{}n,x.  (n  +  1);0;X))



Date html generated: 2015_07_21-PM-03_50_19
Last ObjectModification: 2015_02_04-PM-06_10_34

Home Index