Nuprl Lemma : es-interface-count-as-accum
∀[Info:Type]. ∀[X:EClass(Top)].  (#X = es-interface-accum(λn,x. (n + 1);0;X) ∈ EClass(ℕ))
Proof
Definitions occuring in Statement : 
es-interface-accum: es-interface-accum(f;x;X)
, 
es-interface-count: #X
, 
eclass: EClass(A[eo; e])
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
lambda: λx.A[x]
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
es-interface-extensionality, 
nat_wf, 
es-interface-count_wf, 
es-interface-accum_wf, 
top_wf, 
false_wf, 
le_wf, 
decidable__le, 
not-le-2, 
sq_stable__le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
in-eclass_wf, 
bool_wf, 
eqtt_to_assert, 
bag_size_single_lemma, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
bag_size_empty_lemma, 
es-E_wf, 
event-ordering+_subtype, 
is-interface-accum, 
is-interface-count, 
assert_wf, 
es-interface-subtype_rel2, 
subtype_top, 
eclass_wf, 
event-ordering+_wf, 
es-interface-count-val, 
es-interface-accum-val, 
es-interface-predecessors_wf, 
subtype_rel_list, 
es-E-interface_wf, 
Id_wf, 
es-loc_wf, 
list_wf, 
list_induction, 
all_wf, 
list_accum_wf, 
length_wf, 
list_accum_nil_lemma, 
length_of_nil_lemma, 
list_accum_cons_lemma, 
length_of_cons_lemma, 
iff_weakening_equal, 
zero-le-nat, 
length_wf_nat
Latex:
\mforall{}[Info:Type].  \mforall{}[X:EClass(Top)].    (\#X  =  es-interface-accum(\mlambda{}n,x.  (n  +  1);0;X))
Date html generated:
2015_07_21-PM-03_50_19
Last ObjectModification:
2015_02_04-PM-06_10_34
Home
Index