Nuprl Lemma : es-interface-predecessors-sqequal
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[X,Y:EClass(Top)].  ∀[e:E]. (≤(X)(e) ~ ≤(Y)(e)) supposing ∀e:E. (↑e ∈b X 
⇐⇒ ↑e ∈b Y)
Proof
Definitions occuring in Statement : 
es-interface-predecessors: ≤(X)(e)
, 
in-eclass: e ∈b X
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
es-E: E
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
universe: Type
, 
sqequal: s ~ t
Lemmas : 
es-E_wf, 
event-ordering+_subtype, 
all_wf, 
iff_wf, 
assert_wf, 
in-eclass_wf, 
eclass_wf, 
top_wf, 
event-ordering+_wf, 
append_wf, 
es-before_wf, 
cons_wf, 
nil_wf, 
list_wf, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
equal-wf-T-base, 
colength_wf_list, 
list-cases, 
filter_nil_lemma, 
product_subtype_list, 
spread_cons_lemma, 
sq_stable__le, 
le_antisymmetry_iff, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
zero-add, 
le-add-cancel, 
nat_wf, 
decidable__le, 
false_wf, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-commutes, 
le_wf, 
subtract_wf, 
not-ge-2, 
less-iff-le, 
minus-minus, 
add-swap, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
filter_cons_lemma, 
bool_wf, 
bool_subtype_base, 
iff_imp_equal_bool, 
es-E-interface-property
Latex:
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X,Y:EClass(Top)].
    \mforall{}[e:E].  (\mleq{}(X)(e)  \msim{}  \mleq{}(Y)(e))  supposing  \mforall{}e:E.  (\muparrow{}e  \mmember{}\msubb{}  X  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}e  \mmember{}\msubb{}  Y)
Date html generated:
2015_07_21-PM-03_33_12
Last ObjectModification:
2015_01_27-PM-06_33_37
Home
Index