Nuprl Lemma : first-interface-implies-prior-interface
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[X,Y:EClass(Top)].
  ∀[e:E]. ↑e ∈b prior(Y) supposing ↑e ∈b prior(X) supposing ∀e:E. ((↑e ∈b X) 
⇒ (¬↑e ∈b prior(X)) 
⇒ (↑e ∈b Y))
Proof
Definitions occuring in Statement : 
es-prior-interface: prior(X)
, 
in-eclass: e ∈b X
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
es-E: E
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
universe: Type
Lemmas : 
es-causl-swellfnd, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
assert_witness, 
in-eclass_wf, 
es-prior-interface_wf0, 
assert_wf, 
int_seg_wf, 
int_seg_subtype-nat, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
decidable__equal_int, 
subtype_rel-int_seg, 
le_weakening, 
int_seg_properties, 
le_wf, 
nat_wf, 
zero-le-nat, 
lelt_wf, 
es-causl_wf, 
equal_wf, 
decidable__lt, 
not-equal-2, 
le-add-cancel-alt, 
not-le-2, 
sq_stable__le, 
add-mul-special, 
zero-mul, 
es-interface-subtype_rel2, 
es-E_wf, 
event-ordering+_subtype, 
event-ordering+_wf, 
top_wf, 
subtype_top, 
all_wf, 
not_wf, 
eclass_wf, 
is-prior-interface, 
decidable__assert, 
es-E-interface-property, 
es-locl_transitivity2, 
es-le_weakening, 
es-locl_wf
Latex:
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X,Y:EClass(Top)].
    \mforall{}[e:E].  \muparrow{}e  \mmember{}\msubb{}  prior(Y)  supposing  \muparrow{}e  \mmember{}\msubb{}  prior(X) 
    supposing  \mforall{}e:E.  ((\muparrow{}e  \mmember{}\msubb{}  X)  {}\mRightarrow{}  (\mneg{}\muparrow{}e  \mmember{}\msubb{}  prior(X))  {}\mRightarrow{}  (\muparrow{}e  \mmember{}\msubb{}  Y))
Date html generated:
2015_07_21-PM-02_46_32
Last ObjectModification:
2015_01_27-PM-07_39_58
Home
Index