Nuprl Lemma : first-interface-implies-prior-interface

[Info:Type]. ∀[es:EO+(Info)]. ∀[X,Y:EClass(Top)].
  ∀[e:E]. ↑e ∈b prior(Y) supposing ↑e ∈b prior(X) supposing ∀e:E. ((↑e ∈b X)  (¬↑e ∈b prior(X))  (↑e ∈b Y))


Proof




Definitions occuring in Statement :  es-prior-interface: prior(X) in-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b uimplies: supposing a uall: [x:A]. B[x] top: Top all: x:A. B[x] not: ¬A implies:  Q universe: Type
Lemmas :  es-causl-swellfnd nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf assert_witness in-eclass_wf es-prior-interface_wf0 assert_wf int_seg_wf int_seg_subtype-nat decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__equal_int subtype_rel-int_seg le_weakening int_seg_properties le_wf nat_wf zero-le-nat lelt_wf es-causl_wf equal_wf decidable__lt not-equal-2 le-add-cancel-alt not-le-2 sq_stable__le add-mul-special zero-mul es-interface-subtype_rel2 es-E_wf event-ordering+_subtype event-ordering+_wf top_wf subtype_top all_wf not_wf eclass_wf is-prior-interface decidable__assert es-E-interface-property es-locl_transitivity2 es-le_weakening es-locl_wf

Latex:
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X,Y:EClass(Top)].
    \mforall{}[e:E].  \muparrow{}e  \mmember{}\msubb{}  prior(Y)  supposing  \muparrow{}e  \mmember{}\msubb{}  prior(X) 
    supposing  \mforall{}e:E.  ((\muparrow{}e  \mmember{}\msubb{}  X)  {}\mRightarrow{}  (\mneg{}\muparrow{}e  \mmember{}\msubb{}  prior(X))  {}\mRightarrow{}  (\muparrow{}e  \mmember{}\msubb{}  Y))



Date html generated: 2015_07_21-PM-02_46_32
Last ObjectModification: 2015_01_27-PM-07_39_58

Home Index