Nuprl Lemma : run_local_pred_maximal

M:Type ─→ Type. ∀r:pRunType(P.M[P]). ∀e,x:runEvents(r).
  (run-event-step(x) < run-event-step(e)
   run-event-step(run_local_pred(r;e)) < run-event-step(x)
   (run-event-loc(x) run-event-loc(e) ∈ Id)))


Proof




Definitions occuring in Statement :  run_local_pred: run_local_pred(r;e) run-event-step: run-event-step(e) run-event-loc: run-event-loc(e) runEvents: runEvents(r) pRunType: pRunType(T.M[T]) Id: Id less_than: a < b so_apply: x[s] all: x:A. B[x] not: ¬A implies:  Q function: x:A ─→ B[x] universe: Type equal: t ∈ T
Lemmas :  equal_wf Id_wf run-event-loc_wf less_than_wf run-event-step_wf run_local_pred_wf nat_wf runEvents_wf pRunType_wf less_than_transitivity1 run-local-pred_wf less_than_irreflexivity nat_properties ge_wf decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int le_weakening eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int value-type-has-value int-value-type is-run-event_wf not-le-2 not-equal-2 le_wf int_subtype_base and_wf assert_elim equal-wf-T-base

Latex:
\mforall{}M:Type  {}\mrightarrow{}  Type.  \mforall{}r:pRunType(P.M[P]).  \mforall{}e,x:runEvents(r).
    (run-event-step(x)  <  run-event-step(e)
    {}\mRightarrow{}  run-event-step(run\_local\_pred(r;e))  <  run-event-step(x)
    {}\mRightarrow{}  (\mneg{}(run-event-loc(x)  =  run-event-loc(e))))



Date html generated: 2015_07_23-AM-11_15_16
Last ObjectModification: 2015_01_29-AM-00_06_54

Home Index