Nuprl Lemma : RankEx4-induction

[P:RankEx4() ─→ ℙ]
  ((∀foo:ℤ RankEx4(). (case foo of inl(u) => True inr(u1) => P[u1]  P[RankEx4_Foo(foo)]))  {∀v:RankEx4(). P[v]})


Proof




Definitions occuring in Statement :  RankEx4_Foo: RankEx4_Foo(foo) RankEx4: RankEx4() uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q true: True function: x:A ─→ B[x] decide: case of inl(x) => s[x] inr(y) => t[y] union: left right int:
Lemmas :  uniform-comp-nat-induction all_wf isect_wf le_wf RankEx4_size_wf nat_wf less_than_wf RankEx4-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base subtract_wf decidable__le false_wf not-le-2 condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le le-add-cancel subtract-is-less lelt_wf decidable__lt less-iff-le add-zero eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom uall_wf int_seg_wf le_weakening RankEx4_wf true_wf RankEx4_Foo_wf
\mforall{}[P:RankEx4()  {}\mrightarrow{}  \mBbbP{}]
    ((\mforall{}foo:\mBbbZ{}  +  RankEx4().  (case  foo  of  inl(u)  =>  True  |  inr(u1)  =>  P[u1]  {}\mRightarrow{}  P[RankEx4\_Foo(foo)]))
    {}\mRightarrow{}  \{\mforall{}v:RankEx4().  P[v]\})



Date html generated: 2015_07_17-AM-07_51_14
Last ObjectModification: 2015_01_27-AM-09_36_14

Home Index