Nuprl Lemma : I-path-morph-comp

X:CubicalSet. ∀A:{X ⊢ _}. ∀a,b:{X ⊢ _:A}. ∀I,J,K:Cname List. ∀f:name-morph(I;J). ∀g:name-morph(J;K). ∀alpha:X(I).
u:cubical-path(X;A;a;b;I;alpha).
  (I-path-morph(X;A;I;K;(f g);alpha;u)
  I-path-morph(X;A;J;K;g;f(alpha);I-path-morph(X;A;I;J;f;alpha;u))
  ∈ cubical-path(X;A;a;b;K;(f g)(alpha)))


Proof




Definitions occuring in Statement :  cubical-path: cubical-path(X;A;a;b;I;alpha) I-path-morph: I-path-morph(X;A;I;K;f;alpha;p) cubical-term: {X ⊢ _:AF} cubical-type: {X ⊢ _} cube-set-restriction: f(s) I-cube: X(I) cubical-set: CubicalSet name-comp: (f g) name-morph: name-morph(I;J) coordinate_name: Cname list: List all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  named-path-morph: named-path-morph(X;A;I;K;z;x;f;alpha;w) I-path-morph: I-path-morph(X;A;I;K;f;alpha;p) path-eq: path-eq(X;A;I;alpha;p;q) I-path: I-path(X;A;a;b;I;alpha) rev_implies:  Q iff: ⇐⇒ Q guard: {T} true: True prop: squash: T subtype_rel: A ⊆B uimplies: supposing a so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] implies:  Q and: P ∧ Q quotient: x,y:A//B[x; y] uall: [x:A]. B[x] member: t ∈ T cubical-path: cubical-path(X;A;a;b;I;alpha) all: x:A. B[x] cand: c∧ B named-path: named-path(X;A;a;b;I;alpha;z) not: ¬A false: False
Lemmas referenced :  name-morph_wf I-cube_wf fresh-cname_wf iff_weakening_equal subtype_rel_self cube-set-restriction-comp istype-universe true_wf squash_wf equal_wf subtype_rel-equal I-path-morph_wf path-eq-equiv path-eq_wf I-path_wf quotient-member-eq name-comp_wf cube-set-restriction_wf cubical-path_wf rename-one-name_wf cubical-type-ap-morph-id iota_wf coordinate_name_wf cons_wf cubical-type-at_wf cubical-type-ap-morph_wf extend-name-morph_wf list_wf extend-name-morph-iota l_member_wf rename-one-same name-comp-assoc cubical-type-ap-morph-comp cubical-type_wf cubical-set_wf extend-name-morph-rename-one rename-one-iota extend-name-morph-comp cube-set-restriction-id
Rules used in proof :  sqequalBase productIsType equalityIstype setElimination independent_functionElimination baseClosed imageMemberEquality natural_numberEquality universeEquality imageElimination instantiate applyEquality dependent_functionElimination independent_isectElimination universeIsType because_Cache lambdaEquality_alt rename inhabitedIsType equalitySymmetry equalityTransitivity productElimination promote_hyp pertypeElimination sqequalRule hypothesis hypothesisEquality thin isectElimination extract_by_obid introduction pointwiseFunctionalityForEquality sqequalHypSubstitution cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution applyLambdaEquality hyp_replacement independent_pairFormation voidElimination dependent_set_memberEquality_alt

Latex:
\mforall{}X:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}a,b:\{X  \mvdash{}  \_:A\}.  \mforall{}I,J,K:Cname  List.  \mforall{}f:name-morph(I;J).
\mforall{}g:name-morph(J;K).  \mforall{}alpha:X(I).  \mforall{}u:cubical-path(X;A;a;b;I;alpha).
    (I-path-morph(X;A;I;K;(f  o  g);alpha;u)
    =  I-path-morph(X;A;J;K;g;f(alpha);I-path-morph(X;A;I;J;f;alpha;u)))



Date html generated: 2020_05_21-AM-11_06_26
Last ObjectModification: 2020_01_15-PM-01_26_08

Theory : cubical!sets


Home Index