Nuprl Lemma : I-path-morph-comp
∀X:CubicalSet. ∀A:{X ⊢ _}. ∀a,b:{X ⊢ _:A}. ∀I,J,K:Cname List. ∀f:name-morph(I;J). ∀g:name-morph(J;K). ∀alpha:X(I).
∀u:cubical-path(X;A;a;b;I;alpha).
  (I-path-morph(X;A;I;K;(f o g);alpha;u)
  = I-path-morph(X;A;J;K;g;f(alpha);I-path-morph(X;A;I;J;f;alpha;u))
  ∈ cubical-path(X;A;a;b;K;(f o g)(alpha)))
Proof
Definitions occuring in Statement : 
cubical-path: cubical-path(X;A;a;b;I;alpha)
, 
I-path-morph: I-path-morph(X;A;I;K;f;alpha;p)
, 
cubical-term: {X ⊢ _:AF}
, 
cubical-type: {X ⊢ _}
, 
cube-set-restriction: f(s)
, 
I-cube: X(I)
, 
cubical-set: CubicalSet
, 
name-comp: (f o g)
, 
name-morph: name-morph(I;J)
, 
coordinate_name: Cname
, 
list: T List
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
named-path-morph: named-path-morph(X;A;I;K;z;x;f;alpha;w)
, 
I-path-morph: I-path-morph(X;A;I;K;f;alpha;p)
, 
path-eq: path-eq(X;A;I;alpha;p;q)
, 
I-path: I-path(X;A;a;b;I;alpha)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
true: True
, 
prop: ℙ
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
quotient: x,y:A//B[x; y]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical-path: cubical-path(X;A;a;b;I;alpha)
, 
all: ∀x:A. B[x]
, 
cand: A c∧ B
, 
named-path: named-path(X;A;a;b;I;alpha;z)
, 
not: ¬A
, 
false: False
Lemmas referenced : 
name-morph_wf, 
I-cube_wf, 
fresh-cname_wf, 
iff_weakening_equal, 
subtype_rel_self, 
cube-set-restriction-comp, 
istype-universe, 
true_wf, 
squash_wf, 
equal_wf, 
subtype_rel-equal, 
I-path-morph_wf, 
path-eq-equiv, 
path-eq_wf, 
I-path_wf, 
quotient-member-eq, 
name-comp_wf, 
cube-set-restriction_wf, 
cubical-path_wf, 
rename-one-name_wf, 
cubical-type-ap-morph-id, 
iota_wf, 
coordinate_name_wf, 
cons_wf, 
cubical-type-at_wf, 
cubical-type-ap-morph_wf, 
extend-name-morph_wf, 
list_wf, 
extend-name-morph-iota, 
l_member_wf, 
rename-one-same, 
name-comp-assoc, 
cubical-type-ap-morph-comp, 
cubical-type_wf, 
cubical-set_wf, 
extend-name-morph-rename-one, 
rename-one-iota, 
extend-name-morph-comp, 
cube-set-restriction-id
Rules used in proof : 
sqequalBase, 
productIsType, 
equalityIstype, 
setElimination, 
independent_functionElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
universeEquality, 
imageElimination, 
instantiate, 
applyEquality, 
dependent_functionElimination, 
independent_isectElimination, 
universeIsType, 
because_Cache, 
lambdaEquality_alt, 
rename, 
inhabitedIsType, 
equalitySymmetry, 
equalityTransitivity, 
productElimination, 
promote_hyp, 
pertypeElimination, 
sqequalRule, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
extract_by_obid, 
introduction, 
pointwiseFunctionalityForEquality, 
sqequalHypSubstitution, 
cut, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
applyLambdaEquality, 
hyp_replacement, 
independent_pairFormation, 
voidElimination, 
dependent_set_memberEquality_alt
Latex:
\mforall{}X:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}a,b:\{X  \mvdash{}  \_:A\}.  \mforall{}I,J,K:Cname  List.  \mforall{}f:name-morph(I;J).
\mforall{}g:name-morph(J;K).  \mforall{}alpha:X(I).  \mforall{}u:cubical-path(X;A;a;b;I;alpha).
    (I-path-morph(X;A;I;K;(f  o  g);alpha;u)
    =  I-path-morph(X;A;J;K;g;f(alpha);I-path-morph(X;A;I;J;f;alpha;u)))
Date html generated:
2020_05_21-AM-11_06_26
Last ObjectModification:
2020_01_15-PM-01_26_08
Theory : cubical!sets
Home
Index