Nuprl Lemma : extend-name-morph-comp
∀I,J,K:Cname List. ∀f:name-morph(I;J). ∀g:name-morph(J;K). ∀z,v,v1:Cname.
  ((¬(z ∈ I)) 
⇒ (¬(v ∈ K)) 
⇒ (¬(v1 ∈ J)) 
⇒ ((f o g)[z:=v] = (f[z:=v1] o g[v1:=v]) ∈ name-morph([z / I];[v / K])))
Proof
Definitions occuring in Statement : 
name-comp: (f o g)
, 
extend-name-morph: f[z1:=z2]
, 
name-morph: name-morph(I;J)
, 
coordinate_name: Cname
, 
l_member: (x ∈ l)
, 
cons: [a / b]
, 
list: T List
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
name-morph: name-morph(I;J)
, 
extend-name-morph: f[z1:=z2]
, 
name-comp: (f o g)
, 
compose: f o g
, 
uext: uext(g)
, 
nameset: nameset(L)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
prop: ℙ
, 
isname: isname(z)
, 
true: True
, 
l_member: (x ∈ l)
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
top: Top
, 
select: L[n]
, 
cons: [a / b]
, 
cand: A c∧ B
, 
nat_plus: ℕ+
, 
squash: ↓T
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
sq_stable: SqStable(P)
, 
ge: i ≥ j 
, 
respects-equality: respects-equality(S;T)
Lemmas referenced : 
name-morphs-equal, 
cons_wf, 
coordinate_name_wf, 
extend-name-morph_wf, 
name-comp_wf, 
eq-cname_wf, 
eqtt_to_assert, 
assert-eq-cname, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
equal-wf-T-base, 
set_subtype_base, 
le_wf, 
istype-int, 
int_subtype_base, 
nameset_wf, 
l_member_wf, 
istype-void, 
name-morph_wf, 
list_wf, 
iff_imp_equal_bool, 
le_int_wf, 
btrue_wf, 
iff_functionality_wrt_iff, 
true_wf, 
assert_of_le_int, 
iff_weakening_equal, 
istype-true, 
equal-wf-base, 
istype-le, 
length_of_cons_lemma, 
add_nat_plus, 
length_wf_nat, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
nat_plus_properties, 
add-is-int-iff, 
intformand_wf, 
itermVar_wf, 
itermAdd_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
false_wf, 
length_wf, 
select_wf, 
nat_properties, 
sq_stable__le, 
sq_stable__l_member, 
decidable__equal-coordinate_name, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
nameset_subtype_extd-nameset, 
cons_member, 
isname_wf, 
assert-isname, 
respects-equality-set-trivial2, 
extd-nameset_subtype, 
l_subset_right_cons_trivial, 
not-assert-isname, 
nsub2_subtype_extd-nameset
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
independent_isectElimination, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
functionExtensionality, 
unionElimination, 
equalityElimination, 
productElimination, 
dependent_pairFormation_alt, 
equalityIstype, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
because_Cache, 
voidElimination, 
intEquality, 
natural_numberEquality, 
functionIsType, 
universeIsType, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
isect_memberEquality_alt, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
approximateComputation, 
Error :memTop, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
int_eqEquality, 
productIsType, 
sqequalBase
Latex:
\mforall{}I,J,K:Cname  List.  \mforall{}f:name-morph(I;J).  \mforall{}g:name-morph(J;K).  \mforall{}z,v,v1:Cname.
    ((\mneg{}(z  \mmember{}  I))  {}\mRightarrow{}  (\mneg{}(v  \mmember{}  K))  {}\mRightarrow{}  (\mneg{}(v1  \mmember{}  J))  {}\mRightarrow{}  ((f  o  g)[z:=v]  =  (f[z:=v1]  o  g[v1:=v])))
Date html generated:
2020_05_21-AM-10_49_56
Last ObjectModification:
2019_12_08-PM-07_06_12
Theory : cubical!sets
Home
Index