Nuprl Lemma : extend-name-morph-comp

I,J,K:Cname List. ∀f:name-morph(I;J). ∀g:name-morph(J;K). ∀z,v,v1:Cname.
  ((¬(z ∈ I))  (v ∈ K))  (v1 ∈ J))  ((f g)[z:=v] (f[z:=v1] g[v1:=v]) ∈ name-morph([z I];[v K])))


Proof




Definitions occuring in Statement :  name-comp: (f g) extend-name-morph: f[z1:=z2] name-morph: name-morph(I;J) coordinate_name: Cname l_member: (x ∈ l) cons: [a b] list: List all: x:A. B[x] not: ¬A implies:  Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B name-morph: name-morph(I;J) extend-name-morph: f[z1:=z2] name-comp: (f g) compose: g uext: uext(g) nameset: nameset(L) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A rev_implies:  Q coordinate_name: Cname int_upper: {i...} so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q prop: isname: isname(z) true: True l_member: (x ∈ l) nat: le: A ≤ B less_than': less_than'(a;b) top: Top select: L[n] cons: [a b] cand: c∧ B nat_plus: + squash: T decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) sq_stable: SqStable(P) ge: i ≥  respects-equality: respects-equality(S;T)
Lemmas referenced :  name-morphs-equal cons_wf coordinate_name_wf extend-name-morph_wf name-comp_wf eq-cname_wf eqtt_to_assert assert-eq-cname eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf equal-wf-T-base set_subtype_base le_wf istype-int int_subtype_base nameset_wf l_member_wf istype-void name-morph_wf list_wf iff_imp_equal_bool le_int_wf btrue_wf iff_functionality_wrt_iff true_wf assert_of_le_int iff_weakening_equal istype-true equal-wf-base istype-le length_of_cons_lemma add_nat_plus length_wf_nat decidable__lt full-omega-unsat intformnot_wf intformless_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_wf istype-less_than nat_plus_properties add-is-int-iff intformand_wf itermVar_wf itermAdd_wf intformeq_wf int_formula_prop_and_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma false_wf length_wf select_wf nat_properties sq_stable__le sq_stable__l_member decidable__equal-coordinate_name decidable__le intformle_wf int_formula_prop_le_lemma nameset_subtype_extd-nameset cons_member isname_wf assert-isname respects-equality-set-trivial2 extd-nameset_subtype l_subset_right_cons_trivial not-assert-isname nsub2_subtype_extd-nameset
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality independent_isectElimination applyEquality lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry sqequalRule functionExtensionality unionElimination equalityElimination productElimination dependent_pairFormation_alt equalityIstype promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination because_Cache voidElimination intEquality natural_numberEquality functionIsType universeIsType independent_pairFormation dependent_set_memberEquality_alt isect_memberEquality_alt applyLambdaEquality imageMemberEquality baseClosed imageElimination approximateComputation Error :memTop,  pointwiseFunctionality baseApply closedConclusion int_eqEquality productIsType sqequalBase

Latex:
\mforall{}I,J,K:Cname  List.  \mforall{}f:name-morph(I;J).  \mforall{}g:name-morph(J;K).  \mforall{}z,v,v1:Cname.
    ((\mneg{}(z  \mmember{}  I))  {}\mRightarrow{}  (\mneg{}(v  \mmember{}  K))  {}\mRightarrow{}  (\mneg{}(v1  \mmember{}  J))  {}\mRightarrow{}  ((f  o  g)[z:=v]  =  (f[z:=v1]  o  g[v1:=v])))



Date html generated: 2020_05_21-AM-10_49_56
Last ObjectModification: 2019_12_08-PM-07_06_12

Theory : cubical!sets


Home Index