Nuprl Lemma : face-compatible-image

X:CubicalSet. ∀I,K:Cname List. ∀f:name-morph(I;K). ∀fc1,fc2:I-face(X;I).
  ((↑isname(f (fst(fc1))))
   (↑isname(f (fst(fc2))))
   face-compatible(X;I;fc1;fc2)
   face-compatible(X;K;face-image(X;I;K;f;fc1);face-image(X;I;K;f;fc2)))


Proof




Definitions occuring in Statement :  face-image: face-image(X;I;K;f;face) face-compatible: face-compatible(X;I;f1;f2) I-face: I-face(X;I) cubical-set: CubicalSet name-morph: name-morph(I;J) isname: isname(z) coordinate_name: Cname list: List assert: b pi1: fst(t) all: x:A. B[x] implies:  Q apply: a
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q I-face: I-face(X;I) face-compatible: face-compatible(X;I;f1;f2) spreadn: spread3 face-image: face-image(X;I;K;f;face) pi1: fst(t) uall: [x:A]. B[x] member: t ∈ T name-morph: name-morph(I;J) uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a nameset: nameset(L) decidable: Dec(P) or: P ∨ Q prop: subtype_rel: A ⊆B guard: {T} top: Top false: False sq_type: SQType(T) so_apply: x[s] so_lambda: λ2x.t[x] int_upper: {i...} coordinate_name: Cname not: ¬A iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B squash: T int_seg: {i..j-} lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] true: True so_apply: x[s1;s2;s3] so_lambda: so_lambda(x,y,z.t[x; y; z]) append: as bs
Lemmas referenced :  assert-isname decidable__equal-coordinate_name not_wf equal_wf coordinate_name_wf nameset_wf face-compatible_wf assert_wf isname_wf pi1_wf_top I-face_wf name-morph_wf list_wf cubical-set_wf int_subtype_base le_wf set_subtype_base subtype_base_sq member-list-diff cname_deq_wf cons_wf nil_wf int_seg_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf equal-wf-base-T member_singleton l_member_wf list-diff_wf name-morph_subtype_remove1 squash_wf true_wf cube-set-restriction-comp subtype_rel_self iff_weakening_equal I-cube_wf list_ind_nil_lemma list_ind_cons_lemma face-map_wf2 subtype_rel_wf list-diff-diff list-diff2 list-diff2-sym list_subtype_base name-comp_wf cube-set-restriction_wf face-map-comp
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin sqequalRule rename cut introduction extract_by_obid isectElimination hypothesisEquality applyEquality setElimination hypothesis independent_isectElimination because_Cache dependent_functionElimination unionElimination equalityTransitivity equalitySymmetry lambdaEquality independent_pairEquality isect_memberEquality voidElimination voidEquality natural_numberEquality intEquality cumulativity instantiate independent_functionElimination dependent_set_memberEquality independent_pairFormation applyLambdaEquality imageMemberEquality baseClosed imageElimination approximateComputation dependent_pairFormation int_eqEquality hyp_replacement addLevel impliesFunctionality productEquality universeEquality

Latex:
\mforall{}X:CubicalSet.  \mforall{}I,K:Cname  List.  \mforall{}f:name-morph(I;K).  \mforall{}fc1,fc2:I-face(X;I).
    ((\muparrow{}isname(f  (fst(fc1))))
    {}\mRightarrow{}  (\muparrow{}isname(f  (fst(fc2))))
    {}\mRightarrow{}  face-compatible(X;I;fc1;fc2)
    {}\mRightarrow{}  face-compatible(X;K;face-image(X;I;K;f;fc1);face-image(X;I;K;f;fc2)))



Date html generated: 2018_05_23-PM-06_32_29
Last ObjectModification: 2018_05_16-PM-03_01_57

Theory : cubical!sets


Home Index