Nuprl Lemma : face-map-comp-trivial

A,B:Cname List. ∀g:name-morph(A;B). ∀x:Cname. ∀i:ℕ2.  ((x:=i) g) g ∈ name-morph(A;B) supposing ¬(x ∈ A)


Proof




Definitions occuring in Statement :  name-comp: (f g) face-map: (x:=i) name-morph: name-morph(I;J) coordinate_name: Cname l_member: (x ∈ l) list: List int_seg: {i..j-} uimplies: supposing a all: x:A. B[x] not: ¬A natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T prop: subtype_rel: A ⊆B face-map: (x:=i) name-comp: (f g) compose: g nameset: nameset(L) coordinate_name: Cname int_upper: {i...} implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A name-morph: name-morph(I;J) true: True squash: T iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  name-morph-ext name-comp_wf nameset_wf not_wf l_member_wf coordinate_name_wf int_seg_wf name-morph_wf list_wf face-map_wf name-morph_subtype cons_wf nameset_subtype l_subset_right_cons_trivial eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_subtype_base extd-nameset_wf squash_wf true_wf uext-ap-name iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut equalitySymmetry introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache hypothesis independent_isectElimination natural_numberEquality applyEquality lambdaEquality dependent_functionElimination sqequalRule setElimination rename unionElimination equalityElimination equalityTransitivity productElimination dependent_pairFormation promote_hyp instantiate cumulativity independent_functionElimination voidElimination intEquality imageElimination universeEquality imageMemberEquality baseClosed

Latex:
\mforall{}A,B:Cname  List.  \mforall{}g:name-morph(A;B).  \mforall{}x:Cname.  \mforall{}i:\mBbbN{}2.    ((x:=i)  o  g)  =  g  supposing  \mneg{}(x  \mmember{}  A)



Date html generated: 2017_10_05-AM-10_07_38
Last ObjectModification: 2017_07_28-AM-11_16_39

Theory : cubical!sets


Home Index