Nuprl Lemma : contraction-to-extend_wf

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[cA:Gamma ⊢ Compositon(A)]. ∀[ctr:{Gamma ⊢ _:Contractible(A)}].
  (contraction-to-extend(Gamma;A;cA;ctr) ∈ Gamma ⊢ Extension(A))


Proof




Definitions occuring in Statement :  contraction-to-extend: contraction-to-extend(Gamma;A;cA;ctr) uniform-extend: uniform-extend{i:l}(Gamma; A) composition-structure: Gamma ⊢ Compositon(A) contractible-type: Contractible(A) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T contraction-to-extend: contraction-to-extend(Gamma;A;cA;ctr) extension-fun: extension-fun{i:l}(Gamma;A) subtype_rel: A ⊆B uimplies: supposing a all: x:A. B[x] implies:  Q and: P ∧ Q guard: {T} csm-comp-structure: (cA)tau interval-type: 𝕀 csm-comp: F compose: g cubical-type: {X ⊢ _} csm-ap-type: (AF)s csm-id: 1(X) csm-ap: (s)x interval-0: 0(𝕀) csm-id-adjoin: [u] csm-adjoin: (s;u) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} uniform-extend: uniform-extend{i:l}(Gamma; A) uniform-extension-fun: uniform-extension-fun{i:l}(Gamma;A;ext) prop: cubical-path-app: pth r cand: c∧ B composition-structure: Gamma ⊢ Compositon(A) squash: T true: True cc-fst: p csm+: tau+ interval-1: 1(𝕀) cc-snd: q constant-cubical-type: (X) pi1: fst(t) contr-path: contr-path(c;x) path-eta: path-eta(pth) csm-ap-term: (t)s pi2: snd(t)
Lemmas referenced :  contr-center_wf csm-ap-type_wf csm-ap-term_wf contractible-type_wf subset-cubical-term2 sub_cubical_set_self csm-contractible-type contr-path_wf context-subset_wf thin-context-subset contractible-type-subset context-subset-is-subset path-eta_wf path-type-subtype context-subset-term-subtype csm-comp-structure_wf cube-context-adjoin_wf interval-type_wf cc-fst_wf_interval csm-comp_term csm_id_adjoin_fst_type_lemma subset-cubical-term istype-cubical-term cubical_set_cumulativity-i-j cubical-type-cumulativity2 csm-context-subset-subtype2 face-type_wf cube_set_map_wf uniform-extension-fun_wf composition-structure_wf cubical-type_wf cubical_set_wf cubical-path-app-0 cubical-path-app-1 path-eta-0 path-eta-1 comp_term_wf constrained-cubical-term_wf squash_wf true_wf csm-id-adjoin-subset equal_wf istype-universe cubical-term_wf csm-path-eta csm-cubical-app csm-cubical-snd csm-contr-center csm-face-type context-subset-map subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaEquality_alt extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality hypothesis applyEquality independent_isectElimination sqequalRule Error :memTop,  lambdaFormation_alt equalityTransitivity equalitySymmetry inhabitedIsType independent_pairFormation equalityIstype dependent_functionElimination independent_functionElimination productElimination instantiate setElimination rename dependent_set_memberEquality_alt universeIsType axiomEquality isect_memberEquality_alt isectIsTypeImplies applyLambdaEquality imageMemberEquality baseClosed imageElimination natural_numberEquality hyp_replacement universeEquality functionEquality cumulativity

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  Compositon(A)].  \mforall{}[ctr:\{Gamma  \mvdash{}  \_:Contractible(A)\}].
    (contraction-to-extend(Gamma;A;cA;ctr)  \mmember{}  Gamma  \mvdash{}  Extension(A))



Date html generated: 2020_05_20-PM-05_23_07
Last ObjectModification: 2020_04_17-PM-00_39_36

Theory : cubical!type!theory


Home Index