Nuprl Lemma : nc-e'-lemma7

[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ].  ∀j:ℕ(1,i=j 1 ⋅ s,i=j ∈ I+j ⟶ I+i)


Proof




Definitions occuring in Statement :  nc-e': g,i=j nc-s: s add-name: I+i nh-comp: g ⋅ f nh-id: 1 names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] all: x:A. B[x] not: ¬A set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] names-hom: I ⟶ J nc-e': g,i=j names: names(I) nat: implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  subtype_rel: A ⊆B prop: bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False nh-comp: g ⋅ f dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) compose: g dM: dM(I) dM-lift: dM-lift(I;J;f) nh-id: 1 nc-s: s so_lambda: λ2x.t[x] so_apply: x[s] squash: T DeMorgan-algebra: DeMorganAlgebra true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int dM_inc_wf add-name_wf trivial-member-add-name1 fset-member_wf nat_wf int-deq_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int names_wf set_wf not_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self squash_wf true_wf lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf not-added-name names-subtype f-subset-add-name dM-lift-inc iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation functionExtensionality sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination because_Cache dependent_functionElimination dependent_set_memberEquality applyEquality dependent_pairFormation promote_hyp instantiate cumulativity independent_functionElimination voidElimination lambdaEquality axiomEquality intEquality natural_numberEquality isect_memberEquality imageElimination universeEquality productEquality imageMemberEquality baseClosed

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].    \mforall{}j:\mBbbN{}.  (1,i=j  =  1  \mcdot{}  s,i=j)



Date html generated: 2017_10_05-AM-01_05_44
Last ObjectModification: 2017_07_28-AM-09_27_31

Theory : cubical!type!theory


Home Index