Nuprl Lemma : rv-sep-shift2

rv:InnerProductSpace. ∀a,p,q:Point.  (p  a)


Proof




Definitions occuring in Statement :  inner-product-space: InnerProductSpace rv-add: y ss-sep: y ss-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q rv-sub: y rv-minus: -x uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  ss-sep_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf ss-point_wf rv-sep-iff-norm rv-add_wf ss-eq_wf rv-sub_wf rv-mul_wf int-to-real_wf radd_wf rv-0_wf rv-norm_wf real_wf rleq_wf req_wf rmul_wf rv-ip_wf uiff_transitivity ss-eq_functionality rv-add_functionality ss-eq_weakening rv-mul-linear rv-add-assoc ss-eq_transitivity rv-add-swap rv-add-comm rv-mul-1-add rv-mul_functionality radd-int rv-mul0 rv-add-0 rless_functionality req_weakening rv-norm_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination sqequalRule because_Cache dependent_functionElimination productElimination independent_functionElimination natural_numberEquality minusEquality lambdaEquality setElimination rename setEquality productEquality

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,p,q:Point.    (p  \#  q  {}\mRightarrow{}  p  +  a  \#  q  +  a)



Date html generated: 2017_10_04-PM-11_51_43
Last ObjectModification: 2017_03_14-PM-03_49_00

Theory : inner!product!spaces


Home Index