Nuprl Lemma : rv-sep-shift2
∀rv:InnerProductSpace. ∀a,p,q:Point.  (p # q 
⇒ p + a # q + a)
Proof
Definitions occuring in Statement : 
inner-product-space: InnerProductSpace
, 
rv-add: x + y
, 
ss-sep: x # y
, 
ss-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
rv-sub: x - y
, 
rv-minus: -x
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
ss-sep_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
ss-point_wf, 
rv-sep-iff-norm, 
rv-add_wf, 
ss-eq_wf, 
rv-sub_wf, 
rv-mul_wf, 
int-to-real_wf, 
radd_wf, 
rv-0_wf, 
rv-norm_wf, 
real_wf, 
rleq_wf, 
req_wf, 
rmul_wf, 
rv-ip_wf, 
uiff_transitivity, 
ss-eq_functionality, 
rv-add_functionality, 
ss-eq_weakening, 
rv-mul-linear, 
rv-add-assoc, 
ss-eq_transitivity, 
rv-add-swap, 
rv-add-comm, 
rv-mul-1-add, 
rv-mul_functionality, 
radd-int, 
rv-mul0, 
rv-add-0, 
rless_functionality, 
req_weakening, 
rv-norm_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
natural_numberEquality, 
minusEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
productEquality
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,p,q:Point.    (p  \#  q  {}\mRightarrow{}  p  +  a  \#  q  +  a)
Date html generated:
2017_10_04-PM-11_51_43
Last ObjectModification:
2017_03_14-PM-03_49_00
Theory : inner!product!spaces
Home
Index