Nuprl Lemma : translation-group-point

rv:InnerProductSpace. ∀e:Point. ∀T:ℝ ⟶ Point ⟶ Point.
  (translation-group-fun(rv;e;T)
   Point ≡ {fg:Point ⟶ Point × (Point ⟶ Point)| 
              ∃t:ℝ((∀x:Point. (fst(fg)) x ≡ x) ∧ (∀x:Point. (snd(fg)) x ≡ -(t) x))} )


Proof




Definitions occuring in Statement :  translation-group: translation-group(rv;e;T) translation-group-fun: translation-group-fun(rv;e;T) inner-product-space: InnerProductSpace rminus: -(x) real: ss-eq: x ≡ y ss-point: Point ext-eq: A ≡ B pi1: fst(t) pi2: snd(t) all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] product: x:A × B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q ss-point: Point translation-group: translation-group(rv;e;T) mk-s-subgroup: mk-s-subgroup(sg;x.P[x]) mk-s-group: mk-s-group(ss; e; i; o; sep; invsep) member: t ∈ T top: Top eq_atom: =a y ifthenelse: if then else fi  bfalse: ff set-ss: set-ss(ss;x.P[x]) mk-ss: mk-ss btrue: tt uall: [x:A]. B[x] ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B pi1: fst(t) pi2: snd(t) exists: x:A. B[x] cand: c∧ B prop: so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} uimplies: supposing a trans-apply: T_t(x) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) iff: ⇐⇒ Q translation-group-fun: translation-group-fun(rv;e;T) or: P ∨ Q false: False
Lemmas referenced :  rec_select_update_lemma rv-perm-point all_wf ss-eq_wf real_wf rminus_wf exists_wf ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf ss-sep_wf translation-group-fun_wf trans-apply_wf ss-eq_weakening ss-eq_functionality trans-apply_functionality req_weakening radd_wf int-to-real_wf radd-rminus-both ss-eq_inversion trans-apply-add trans-apply-0 radd-rminus ss-eq_transitivity ss-sep_functionality rneq_irreflexivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isectElimination independent_pairFormation lambdaEquality setElimination rename productElimination dependent_set_memberEquality independent_pairEquality hypothesisEquality dependent_pairFormation because_Cache productEquality applyEquality functionExtensionality setEquality functionEquality instantiate independent_isectElimination independent_functionElimination natural_numberEquality addLevel allFunctionality impliesFunctionality levelHypothesis andLevelFunctionality allLevelFunctionality unionElimination

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}e:Point.  \mforall{}T:\mBbbR{}  {}\mrightarrow{}  Point  {}\mrightarrow{}  Point.
    (translation-group-fun(rv;e;T)
    {}\mRightarrow{}  Point  \mequiv{}  \{fg:Point  {}\mrightarrow{}  Point  \mtimes{}  (Point  {}\mrightarrow{}  Point)| 
                            \mexists{}t:\mBbbR{}.  ((\mforall{}x:Point.  (fst(fg))  x  \mequiv{}  T  t  x)  \mwedge{}  (\mforall{}x:Point.  (snd(fg))  x  \mequiv{}  T  -(t)  x))\}  )



Date html generated: 2017_10_05-AM-00_22_19
Last ObjectModification: 2017_06_26-AM-10_19_53

Theory : inner!product!spaces


Home Index