Nuprl Lemma : trans-apply-0
∀rv:InnerProductSpace. ∀T:ℝ ⟶ Point ⟶ Point.  ∀x:Point. T_r0(x) ≡ x supposing ∃e:Point. translation-group-fun(rv;e;T)
Proof
Definitions occuring in Statement : 
trans-apply: T_t(x)
, 
translation-group-fun: translation-group-fun(rv;e;T)
, 
inner-product-space: InnerProductSpace
, 
int-to-real: r(n)
, 
real: ℝ
, 
ss-eq: x ≡ y
, 
ss-point: Point
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
translation-group-fun: translation-group-fun(rv;e;T)
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
ss-eq: x ≡ y
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
trans-apply: T_t(x)
, 
stable: Stable{P}
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
ss-sep_wf, 
trans-apply_wf, 
real_wf, 
int-to-real_wf, 
exists_wf, 
translation-group-fun_wf, 
ss-eq_wf, 
rv-add_wf, 
rv-mul_wf, 
rv-0_wf, 
uiff_transitivity, 
ss-eq_functionality, 
rv-add_functionality, 
ss-eq_weakening, 
rv-mul0, 
rv-0-add, 
radd_wf, 
trans-apply_functionality, 
req_weakening, 
stable__ss-eq, 
false_wf, 
or_wf, 
rneq_wf, 
not_wf, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
ss-sep_functionality, 
not-rneq, 
radd-preserves-req, 
rminus_wf, 
req_functionality, 
radd-rminus-assoc, 
radd-rminus-both, 
req_inversion
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
voidElimination, 
because_Cache, 
functionExtensionality, 
natural_numberEquality, 
functionEquality, 
independent_functionElimination, 
dependent_pairFormation, 
unionElimination
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}T:\mBbbR{}  {}\mrightarrow{}  Point  {}\mrightarrow{}  Point.
    \mforall{}x:Point.  T\_r0(x)  \mequiv{}  x  supposing  \mexists{}e:Point.  translation-group-fun(rv;e;T)
Date html generated:
2017_10_05-AM-00_21_33
Last ObjectModification:
2017_07_28-AM-08_55_30
Theory : inner!product!spaces
Home
Index