Nuprl Lemma : trans-apply-0

rv:InnerProductSpace. ∀T:ℝ ⟶ Point ⟶ Point.  ∀x:Point. T_r0(x) ≡ supposing ∃e:Point. translation-group-fun(rv;e;T)


Proof




Definitions occuring in Statement :  trans-apply: T_t(x) translation-group-fun: translation-group-fun(rv;e;T) inner-product-space: InnerProductSpace int-to-real: r(n) real: ss-eq: x ≡ y ss-point: Point uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T exists: x:A. B[x] translation-group-fun: translation-group-fun(rv;e;T) and: P ∧ Q uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} ss-eq: x ≡ y not: ¬A implies:  Q false: False prop: so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) trans-apply: T_t(x) stable: Stable{P} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf ss-sep_wf trans-apply_wf real_wf int-to-real_wf exists_wf translation-group-fun_wf ss-eq_wf rv-add_wf rv-mul_wf rv-0_wf uiff_transitivity ss-eq_functionality rv-add_functionality ss-eq_weakening rv-mul0 rv-0-add radd_wf trans-apply_functionality req_weakening stable__ss-eq false_wf or_wf rneq_wf not_wf minimal-double-negation-hyp-elim minimal-not-not-excluded-middle ss-sep_functionality not-rneq radd-preserves-req rminus_wf req_functionality radd-rminus-assoc radd-rminus-both req_inversion
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin hypothesis extract_by_obid isectElimination hypothesisEquality applyEquality instantiate independent_isectElimination sqequalRule lambdaEquality dependent_functionElimination voidElimination because_Cache functionExtensionality natural_numberEquality functionEquality independent_functionElimination dependent_pairFormation unionElimination

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}T:\mBbbR{}  {}\mrightarrow{}  Point  {}\mrightarrow{}  Point.
    \mforall{}x:Point.  T\_r0(x)  \mequiv{}  x  supposing  \mexists{}e:Point.  translation-group-fun(rv;e;T)



Date html generated: 2017_10_05-AM-00_21_33
Last ObjectModification: 2017_07_28-AM-08_55_30

Theory : inner!product!spaces


Home Index