Nuprl Lemma : free-dl-1

T:Type. ∀eq:EqDecider(T). ∀x:Point(free-dist-lattice(T; eq)).  (x 1 ∈ Point(free-dist-lattice(T; eq)) ⇐⇒ {} ∈ x)


Proof




Definitions occuring in Statement :  free-dist-lattice: free-dist-lattice(T; eq) lattice-1: 1 lattice-point: Point(l) deq-fset: deq-fset(eq) empty-fset: {} fset-member: a ∈ s deq: EqDecider(T) all: x:A. B[x] iff: ⇐⇒ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] lattice-1: 1 record-select: r.x free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y btrue: tt fset-singleton: {x} cons: [a b] empty-fset: {} nil: [] it: uall: [x:A]. B[x] member: t ∈ T top: Top iff: ⇐⇒ Q and: P ∧ Q implies:  Q uiff: uiff(P;Q) uimplies: supposing a prop: rev_implies:  Q subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] so_apply: x[s] bool: 𝔹 unit: Unit bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A f-proper-subset: xs ⊆≠ ys f-subset: xs ⊆ ys squash: T true: True
Lemmas referenced :  free-dl-point member-fset-singleton fset_wf deq-fset_wf empty-fset_wf fset-member_wf equal-wf-T-base assert_wf fset-antichain_wf lattice-point_wf free-dist-lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf deq_wf assert-fset-antichain fset-extensionality fset-singleton_wf fset-member_witness fset-null_wf bool_wf eqtt_to_assert assert-fset-null eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot equal-wf-base-T mem_empty_lemma squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis independent_pairFormation cumulativity hypothesisEquality because_Cache productElimination independent_isectElimination hyp_replacement equalitySymmetry applyLambdaEquality setElimination rename setEquality baseClosed applyEquality instantiate lambdaEquality productEquality universeEquality dependent_set_memberEquality isect_memberFormation equalityTransitivity independent_functionElimination dependent_functionElimination unionElimination equalityElimination dependent_pairFormation promote_hyp imageElimination natural_numberEquality imageMemberEquality

Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}x:Point(free-dist-lattice(T;  eq)).    (x  =  1  \mLeftarrow{}{}\mRightarrow{}  \{\}  \mmember{}  x)



Date html generated: 2017_10_05-AM-00_34_56
Last ObjectModification: 2017_07_28-AM-09_14_23

Theory : lattices


Home Index