Nuprl Lemma : Cauchy-Schwarz1

[n:ℕ]. ∀[x,y:ℕ1 ⟶ ℝ].
  ((Σ{x[i] y[i] 0≤i≤n} * Σ{x[i] y[i] 0≤i≤n}) ≤ {x[i] x[i] 0≤i≤n} * Σ{y[i] y[i] 0≤i≤n}))


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} rleq: x ≤ y rmul: b real: int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B not: ¬A false: False subtype_rel: A ⊆B prop: int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top itermConstant: "const" req_int_terms: t1 ≡ t2 guard: {T} pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m]
Lemmas referenced :  rmul_preserves_rleq rmul_wf rsum_wf int_seg_wf rless-int less_than'_wf rsub_wf nat_plus_wf real_wf nat_wf int-to-real_wf nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf itermAdd_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf lelt_wf le_wf rleq_functionality req_transitivity real_term_polynomial itermSubtract_wf itermMultiply_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 rmul_functionality req_weakening rsum_functionality2 radd_wf rsum_product radd_functionality int_seg_properties req_inversion rsum_linearity2 rsum_linearity1 rsum_functionality_wrt_rleq square-nonneg rleq-implies-rleq real_term_value_add_lemma rleq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename because_Cache hypothesis sqequalRule lambdaEquality applyEquality functionExtensionality hypothesisEquality addEquality independent_isectElimination dependent_functionElimination productElimination independent_functionElimination independent_pairFormation imageMemberEquality baseClosed independent_pairEquality minusEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality voidElimination dependent_set_memberEquality unionElimination dependent_pairFormation int_eqEquality intEquality voidEquality computeAll lambdaFormation addLevel impliesFunctionality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}].
    ((\mSigma{}\{x[i]  *  y[i]  |  0\mleq{}i\mleq{}n\}  *  \mSigma{}\{x[i]  *  y[i]  |  0\mleq{}i\mleq{}n\})  \mleq{}  (\mSigma{}\{x[i]  *  x[i]  |  0\mleq{}i\mleq{}n\}
    *  \mSigma{}\{y[i]  *  y[i]  |  0\mleq{}i\mleq{}n\}))



Date html generated: 2017_10_03-AM-09_03_56
Last ObjectModification: 2017_07_28-AM-07_41_04

Theory : reals


Home Index