Nuprl Lemma : fun-converges_functionality

[I:Interval]. ∀f,g:ℕ ⟶ I ⟶ℝ.  ((∀n:ℕrfun-eq(I;f n;g n))  λn.f[n;x]↓ for x ∈ I)  λn.g[n;x]↓ for x ∈ I))


Proof




Definitions occuring in Statement :  fun-converges: λn.f[n; x]↓ for x ∈ I) rfun-eq: rfun-eq(I;f;g) rfun: I ⟶ℝ interval: Interval nat: uall: [x:A]. B[x] so_apply: x[s1;s2] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2y.t[x; y] label: ...$L... t rfun: I ⟶ℝ so_apply: x[s1;s2] subtype_rel: A ⊆B prop: nat_plus: + uimplies: supposing a sq_stable: SqStable(P) guard: {T} squash: T fun-converges: λn.f[n; x]↓ for x ∈ I) exists: x:A. B[x] fun-converges-to: lim n→∞.f[n; x] = λy.g[y] for x ∈ I rneq: x ≠ y or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q int_upper: {i...} decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top so_lambda: λ2x.t[x] so_apply: x[s] le: A ≤ B rfun-eq: rfun-eq(I;f;g) r-ap: f(x) uiff: uiff(P;Q)
Lemmas referenced :  fun-converges_wf subtype_rel_self real_wf i-member_wf istype-nat rfun-eq_wf rfun_wf interval_wf upper_subtype_nat sq_stable__le le_weakening2 istype-int_upper i-approx_wf istype-less_than i-member-approx rleq_wf rabs_wf rsub_wf rdiv_wf rless-int int_upper_properties nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf int-to-real_wf nat_plus_wf icompact_wf fun-converges-to_wf sq_stable__rleq rleq_functionality rabs_functionality rsub_functionality req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality_alt applyEquality hypothesis functionEquality setEquality setIsType functionIsType inhabitedIsType dependent_functionElimination setElimination rename independent_isectElimination natural_numberEquality independent_functionElimination imageMemberEquality baseClosed imageElimination because_Cache dependent_set_memberEquality_alt productElimination dependent_pairFormation_alt inrFormation_alt unionElimination approximateComputation int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation closedConclusion

Latex:
\mforall{}[I:Interval]
    \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}.    ((\mforall{}n:\mBbbN{}.  rfun-eq(I;f  n;g  n))  {}\mRightarrow{}  \mlambda{}n.f[n;x]\mdownarrow{}  for  x  \mmember{}  I)  {}\mRightarrow{}  \mlambda{}n.g[n;x]\mdownarrow{}  for  x  \mmember{}  I))



Date html generated: 2019_10_30-AM-08_57_35
Last ObjectModification: 2018_11_12-AM-10_57_07

Theory : reals


Home Index