Nuprl Lemma : fun-converges_functionality
∀[I:Interval]. ∀f,g:ℕ ⟶ I ⟶ℝ.  ((∀n:ℕ. rfun-eq(I;f n;g n)) 
⇒ λn.f[n;x]↓ for x ∈ I) 
⇒ λn.g[n;x]↓ for x ∈ I))
Proof
Definitions occuring in Statement : 
fun-converges: λn.f[n; x]↓ for x ∈ I)
, 
rfun-eq: rfun-eq(I;f;g)
, 
rfun: I ⟶ℝ
, 
interval: Interval
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
label: ...$L... t
, 
rfun: I ⟶ℝ
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
sq_stable: SqStable(P)
, 
guard: {T}
, 
squash: ↓T
, 
fun-converges: λn.f[n; x]↓ for x ∈ I)
, 
exists: ∃x:A. B[x]
, 
fun-converges-to: lim n→∞.f[n; x] = λy.g[y] for x ∈ I
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
int_upper: {i...}
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
rfun-eq: rfun-eq(I;f;g)
, 
r-ap: f(x)
, 
uiff: uiff(P;Q)
Lemmas referenced : 
fun-converges_wf, 
subtype_rel_self, 
real_wf, 
i-member_wf, 
istype-nat, 
rfun-eq_wf, 
rfun_wf, 
interval_wf, 
upper_subtype_nat, 
sq_stable__le, 
le_weakening2, 
istype-int_upper, 
i-approx_wf, 
istype-less_than, 
i-member-approx, 
rleq_wf, 
rabs_wf, 
rsub_wf, 
rdiv_wf, 
rless-int, 
int_upper_properties, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
int-to-real_wf, 
nat_plus_wf, 
icompact_wf, 
fun-converges-to_wf, 
sq_stable__rleq, 
rleq_functionality, 
rabs_functionality, 
rsub_functionality, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
hypothesis, 
functionEquality, 
setEquality, 
setIsType, 
functionIsType, 
inhabitedIsType, 
dependent_functionElimination, 
setElimination, 
rename, 
independent_isectElimination, 
natural_numberEquality, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
because_Cache, 
dependent_set_memberEquality_alt, 
productElimination, 
dependent_pairFormation_alt, 
inrFormation_alt, 
unionElimination, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
closedConclusion
Latex:
\mforall{}[I:Interval]
    \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}.    ((\mforall{}n:\mBbbN{}.  rfun-eq(I;f  n;g  n))  {}\mRightarrow{}  \mlambda{}n.f[n;x]\mdownarrow{}  for  x  \mmember{}  I)  {}\mRightarrow{}  \mlambda{}n.g[n;x]\mdownarrow{}  for  x  \mmember{}  I))
Date html generated:
2019_10_30-AM-08_57_35
Last ObjectModification:
2018_11_12-AM-10_57_07
Theory : reals
Home
Index