Nuprl Lemma : fun-series-converges-to-everywhere

f:ℕ ⟶ ℝ ⟶ ℝ
  ((∀n:ℕ. ∀x,y:ℝ.  ((x y)  (f[n;x] f[n;y])))
   (∀m:ℕ+. ∃c:ℝ((r0 ≤ c) ∧ (c < r1) ∧ (∃N:ℕ. ∀n:{N...}. ∀x:{x:ℝ|x| ≤ r(m)} .  (|f[n 1;x]| ≤ (c |f[n;x]|)))))
   (∀g:ℝ ⟶ ℝ((∀x:ℝlim n→∞{f[i;x] 0≤i≤n} g[x])  lim n→∞{f[i;x] 0≤i≤n} = λx.g[x] for x ∈ (-∞, ∞))))


Proof




Definitions occuring in Statement :  fun-converges-to: lim n→∞.f[n; x] = λy.g[y] for x ∈ I riiint: (-∞, ∞) rsum: Σ{x[k] n≤k≤m} converges-to: lim n→∞.x[n] y rleq: x ≤ y rless: x < y rabs: |x| req: y rmul: b int-to-real: r(n) real: int_upper: {i...} nat_plus: + nat: so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q so_lambda: λ2y.t[x; y] rfun: I ⟶ℝ so_apply: x[s1;s2] uall: [x:A]. B[x] prop: fun-series-converges: Σn.f[n; x]↓ for x ∈ I nat: so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A nat_plus: + int_upper: {i...} guard: {T} rless: x < y sq_exists: x:{A| B[x]} real: sq_stable: SqStable(P) squash: T ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top
Lemmas referenced :  fun-ratio-test-everywhere fun-series-converges-absolutely-converges riiint_wf nat_wf real_wf i-member_wf fun-converges-converges-to rsum_wf int_seg_wf set_wf all_wf converges-to_wf int_seg_subtype_nat false_wf nat_plus_wf exists_wf rleq_wf int-to-real_wf rless_wf int_upper_wf rabs_wf int_upper_properties nat_properties sq_stable__less_than nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf rmul_wf int_upper_subtype_nat req_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination sqequalRule lambdaEquality applyEquality functionExtensionality setElimination rename setEquality isectElimination because_Cache natural_numberEquality addEquality independent_isectElimination independent_pairFormation functionEquality productEquality dependent_set_memberEquality imageMemberEquality baseClosed imageElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll

Latex:
\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}  {}\mrightarrow{}  \mBbbR{}
    ((\mforall{}n:\mBbbN{}.  \mforall{}x,y:\mBbbR{}.    ((x  =  y)  {}\mRightarrow{}  (f[n;x]  =  f[n;y])))
    {}\mRightarrow{}  (\mforall{}m:\mBbbN{}\msupplus{}
                \mexists{}c:\mBbbR{}
                  ((r0  \mleq{}  c)
                  \mwedge{}  (c  <  r1)
                  \mwedge{}  (\mexists{}N:\mBbbN{}.  \mforall{}n:\{N...\}.  \mforall{}x:\{x:\mBbbR{}|  |x|  \mleq{}  r(m)\}  .    (|f[n  +  1;x]|  \mleq{}  (c  *  |f[n;x]|)))))
    {}\mRightarrow{}  (\mforall{}g:\mBbbR{}  {}\mrightarrow{}  \mBbbR{}
                ((\mforall{}x:\mBbbR{}.  lim  n\mrightarrow{}\minfty{}.\mSigma{}\{f[i;x]  |  0\mleq{}i\mleq{}n\}  =  g[x])
                {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.\mSigma{}\{f[i;x]  |  0\mleq{}i\mleq{}n\}  =  \mlambda{}x.g[x]  for  x  \mmember{}  (-\minfty{},  \minfty{}))))



Date html generated: 2016_10_26-AM-11_14_44
Last ObjectModification: 2016_08_28-PM-02_18_31

Theory : reals


Home Index