Nuprl Lemma : fun-ratio-test-everywhere
∀f:ℕ ⟶ ℝ ⟶ ℝ
  ((∀n:ℕ. ∀x,y:ℝ.  ((x = y) 
⇒ (f[n;x] = f[n;y])))
  
⇒ (∀m:ℕ+. ∃c:ℝ. ((r0 ≤ c) ∧ (c < r1) ∧ (∃N:ℕ. ∀n:{N...}. ∀x:{x:ℝ| |x| ≤ r(m)} .  (|f[n + 1;x]| ≤ (c * |f[n;x]|)))))
  
⇒ Σn.f[n;x]↓ absolutely for x ∈ (-∞, ∞))
Proof
Definitions occuring in Statement : 
fun-series-converges-absolutely: Σn.f[n; x]↓ absolutely for x ∈ I
, 
riiint: (-∞, ∞)
, 
rleq: x ≤ y
, 
rless: x < y
, 
rabs: |x|
, 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
int_upper: {i...}
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
rfun: I ⟶ℝ
, 
top: Top
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
so_apply: x[s1;s2]
, 
guard: {T}
, 
and: P ∧ Q
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
int_upper: {i...}
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
real: ℝ
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
cand: A c∧ B
, 
le: A ≤ B
, 
i-approx: i-approx(I;n)
, 
riiint: (-∞, ∞)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
true: True
Lemmas referenced : 
fun-ratio-test, 
riiint_wf, 
member_riiint_lemma, 
subtype_rel_dep_function, 
real_wf, 
true_wf, 
subtype_rel_self, 
set_wf, 
nat_wf, 
iproper-riiint, 
i-member_wf, 
req_wf, 
nat_plus_wf, 
icompact_wf, 
i-approx_wf, 
all_wf, 
exists_wf, 
rleq_wf, 
int-to-real_wf, 
rless_wf, 
int_upper_wf, 
rabs_wf, 
int_upper_properties, 
nat_properties, 
sq_stable__less_than, 
nat_plus_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
rmul_wf, 
int_upper_subtype_nat, 
less_than_wf, 
sq_stable__icompact, 
member_rccint_lemma, 
rabs-rleq-iff, 
squash_wf, 
rminus-int, 
iff_weakening_equal
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
hypothesis, 
lambdaFormation, 
functionExtensionality, 
applyEquality, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
isectElimination, 
lambdaEquality, 
setEquality, 
independent_isectElimination, 
setElimination, 
rename, 
because_Cache, 
independent_functionElimination, 
functionEquality, 
productEquality, 
natural_numberEquality, 
dependent_set_memberEquality, 
addEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}  {}\mrightarrow{}  \mBbbR{}
    ((\mforall{}n:\mBbbN{}.  \mforall{}x,y:\mBbbR{}.    ((x  =  y)  {}\mRightarrow{}  (f[n;x]  =  f[n;y])))
    {}\mRightarrow{}  (\mforall{}m:\mBbbN{}\msupplus{}
                \mexists{}c:\mBbbR{}
                  ((r0  \mleq{}  c)
                  \mwedge{}  (c  <  r1)
                  \mwedge{}  (\mexists{}N:\mBbbN{}.  \mforall{}n:\{N...\}.  \mforall{}x:\{x:\mBbbR{}|  |x|  \mleq{}  r(m)\}  .    (|f[n  +  1;x]|  \mleq{}  (c  *  |f[n;x]|)))))
    {}\mRightarrow{}  \mSigma{}n.f[n;x]\mdownarrow{}  absolutely  for  x  \mmember{}  (-\minfty{},  \minfty{}))
Date html generated:
2016_10_26-AM-11_14_31
Last ObjectModification:
2016_08_28-PM-02_02_49
Theory : reals
Home
Index