Nuprl Lemma : power-series-converges-to

a:ℕ ⟶ ℝ. ∀b:ℝ. ∀r:{r:ℝr0 < r} . ∀N:ℕ.
  ((∀n:{N...}. (|a[n 1]| ≤ (|a[n]|/r)))
   (∀g:(b r, r) ⟶ℝ
        ((∀x:{x:ℝx ∈ (b r, r)} . Σi.a[i] b^i g[x])
         lim n→∞{a[i] b^i 0≤i≤n} = λx.g[x] for x ∈ (b r, r))))


Proof




Definitions occuring in Statement :  fun-converges-to: lim n→∞.f[n; x] = λy.g[y] for x ∈ I rfun: I ⟶ℝ rooint: (l, u) i-member: r ∈ I series-sum: Σn.x[n] a rsum: Σ{x[k] n≤k≤m} rdiv: (x/y) rleq: x ≤ y rless: x < y rabs: |x| rnexp: x^k1 rsub: y rmul: b radd: b int-to-real: r(n) real: int_upper: {i...} nat: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] rfun: I ⟶ℝ nat: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A prop: so_apply: x[s1;s2] series-sum: Σn.x[n] a top: Top int_upper: {i...} guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] rneq: x ≠ y sq_stable: SqStable(P) squash: T fun-series-converges: Σn.f[n; x]↓ for x ∈ I
Lemmas referenced :  power-series-converges fun-converges-converges-to rooint_wf rsub_wf radd_wf rsum_wf rmul_wf int_seg_subtype_nat false_wf rnexp_wf int_seg_wf real_wf i-member_wf nat_wf member_rooint_lemma set_wf all_wf series-sum_wf rfun_wf int_upper_wf rleq_wf rabs_wf int_upper_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf rdiv_wf int_upper_subtype_nat sq_stable__rless int-to-real_wf rless_wf fun-series-converges-absolutely-converges
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination isectElimination setElimination rename because_Cache sqequalRule lambdaEquality natural_numberEquality applyEquality functionExtensionality addEquality independent_isectElimination independent_pairFormation setEquality dependent_set_memberEquality isect_memberEquality voidElimination voidEquality unionElimination dependent_pairFormation int_eqEquality intEquality computeAll inrFormation imageMemberEquality baseClosed imageElimination functionEquality

Latex:
\mforall{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}b:\mBbbR{}.  \mforall{}r:\{r:\mBbbR{}|  r0  <  r\}  .  \mforall{}N:\mBbbN{}.
    ((\mforall{}n:\{N...\}.  (|a[n  +  1]|  \mleq{}  (|a[n]|/r)))
    {}\mRightarrow{}  (\mforall{}g:(b  -  r,  b  +  r)  {}\mrightarrow{}\mBbbR{}
                ((\mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  (b  -  r,  b  +  r)\}  .  \mSigma{}i.a[i]  *  x  -  b\^{}i  =  g[x])
                {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.\mSigma{}\{a[i]  *  x  -  b\^{}i  |  0\mleq{}i\mleq{}n\}  =  \mlambda{}x.g[x]  for  x  \mmember{}  (b  -  r,  b  +  r))))



Date html generated: 2016_10_26-AM-11_15_46
Last ObjectModification: 2016_08_27-PM-08_39_51

Theory : reals


Home Index