Nuprl Lemma : quadratic-1-2-equal

[a,b,c:ℝ].
  ({(quadratic1(a;b;c) quadratic2(a;b;c)) ∧ (quadratic1(a;b;c) (-(b)/r(2) a))}) supposing 
     (((b b) (r(4) c)) and 
     a ≠ r0)


Proof




Definitions occuring in Statement :  quadratic2: quadratic2(a;b;c) quadratic1: quadratic1(a;b;c) rdiv: (x/y) rneq: x ≠ y req: y rmul: b rminus: -(x) int-to-real: r(n) real: uimplies: supposing a uall: [x:A]. B[x] guard: {T} and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  top: Top not: ¬A false: False req_int_terms: t1 ≡ t2 rev_uimplies: rev_uimplies(P;Q) cand: c∧ B subtype_rel: A ⊆B uiff: uiff(P;Q) quadratic1: quadratic1(a;b;c) quadratic2: quadratic2(a;b;c) prop: uimplies: supposing a true: True less_than': less_than'(a;b) squash: T less_than: a < b rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q implies:  Q uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] or: P ∨ Q rneq: x ≠ y guard: {T}
Lemmas referenced :  real_term_value_minus_lemma real_term_value_add_lemma radd_functionality rdiv_functionality rsqrt_functionality req_functionality real_term_value_var_lemma real_term_value_mul_lemma real_term_value_const_lemma real_term_value_sub_lemma real_polynomial_null real_wf rneq_wf req_wf rdiv_wf quadratic2_wf rsub_functionality rleq_functionality quadratic1_wf req_witness req_weakening itermMinus_wf itermAdd_wf rminus_wf radd_wf rsqrt0 rleq_weakening_equal rleq_wf rleq_weakening req_inversion rsqrt_wf req-iff-rsub-is-0 itermVar_wf itermConstant_wf itermMultiply_wf itermSubtract_wf rsub_wf req-implies-req rless_wf rmul-zero-both rmul_comm rmul_wf rless_functionality rless-int int-to-real_wf rmul_preserves_rless
Rules used in proof :  voidEquality voidElimination intEquality int_eqEquality lambdaEquality approximateComputation equalitySymmetry equalityTransitivity isect_memberEquality independent_pairEquality isect_memberFormation applyEquality dependent_set_memberEquality inrFormation because_Cache independent_isectElimination baseClosed imageMemberEquality independent_pairFormation productElimination independent_functionElimination hypothesis natural_numberEquality isectElimination hypothesisEquality dependent_functionElimination extract_by_obid introduction inlFormation thin unionElimination sqequalHypSubstitution cut computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}[a,b,c:\mBbbR{}].
    (\{(quadratic1(a;b;c)  =  quadratic2(a;b;c))  \mwedge{}  (quadratic1(a;b;c)  =  (-(b)/r(2)  *  a))\})  supposing 
          (((b  *  b)  =  (r(4)  *  a  *  c))  and 
          a  \mneq{}  r0)



Date html generated: 2018_05_22-PM-02_24_07
Last ObjectModification: 2018_05_21-AM-00_46_26

Theory : reals


Home Index